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Dankwoord

In mijn dankbetuigingen wil ik graag de route volgen die ik als interdisciplinair pro-
movendus van het Instituut voor Moleculen en Materialen heb afgelegd in 4 jaar tijd.
Begin 2009 had ik een bureau op de laser fysica afdeling(en). Een half jaar daarna ver-
huisde ik naar de NMR afdeling. Na tweeënhalf jaar NMR onderzoek ben ik gewisseld
van onderwerp, niet van bureau, en bij de afdeling theoretische chemie begonnen.

Ik begin graag met het bedanken van mijn onofficiële 4e promotor Wim van der
Zande. Beste Wim, bedankt voor je ‘chivalrous support’ [1], enthousiasme en be-
trokkenheid. Ik heb me altijd gesteund gevoeld en waardeer het zeer dat je met
regelmaat even langskwam. Ik bewonder je bevlogenheid voor natuurkunde en ben
blij dat we toch nog samen aan een project hebben kunnen werken.

Beste Leo, ik wil je bedanken voor je betrokkenheid en goede zorgen voor mij als
begeleider. Naast de ontspannen gesprekken over werk en privé, waardeer ik heel erg de
momenten waarop we samen onderzoek gedaan hebben. Daar heb ik veel van geleerd.
Ook wil ik hier de kans gebruiken om je te bedanken voor alle mogelijkheden die je
me hebt gegeven, o.a.: de NWO TopTalent aanvraag, onderzoek doen in Düsseldorf,
conferenties en (last but not least) het regelen van een IMM promotieplaats. Ten slotte,
ik vind het een eer om je laatste promovendus te zijn nu je met je emeritaat bent.

In de loop van de jaren heb ik veel mensen van de laser afdelingen in meer of mindere
maten leren kennen. In het bijzonder wil ik Frans S. bedanken voor de plezierige
samenwerking betreft het onderzoek, maar ook voor de steun tijdens de pittige tijd aan
het einde van de mijn promotie. Verder zijn er een hoop mensen die ik wil bedanken
om velerlei zaken: discussies, dagje-uit, borrelen, etc. Thank you all: Dave, Frans H.,
Simona, André, Afric, Jolijn, Cor, Leander, Nico, Rienk, Frans W., Gautam, Denis,
Chandan, Raymund, Ashim, Julien, Devasena, Anouk, Ruurd, Elena, Arjan v. V.,
Arjan D. Mernoosh, Gerbe, Ivan, ZhiChau, Zahid, Vitali, Bas, Peter en Masha.

Dan is de volgende halte op mijn route de NMR afdeling. Arno, u wil ik als eerst
bedanken voor: de discussies, uw kritische kijk op mijn geschreven werk en de goede
bereikbaarheid voor vragen ondanks de drukke agenda. Het was leuk om methodol-
ogisch werk te doen aan quadrupool NMR met/voor iemand met zoveel liefde voor
het onderwerp; de twinkeling in uw ogen is me niet ontgaan. Thank you Andreas and
Suresh for the nice cooperation regarding the NMR experiments and the work on the
paper’s manuscript. Geen experimenten zonder technische hulp, dus bedank ik ook
graag: Jan v. O., Hans J. en Gerrit. Margriet en Ernst wil ik bedanken voor de metin-
gen die ze hebben gedaan. Daarnaast wil ik Ernst ook bedanken voor het kritisch lezen
van mijn manuscripten. Bas, jou wil ik bedanken voor de gesmeerde samenwerking (we
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hebben een paper!) en het feit dat jij mijn enige en dus enigste student wilde zijn. Ten
slotte wil ik graag iedereen van de afdeling bedanken voor de gezellige koffiepauzes en
overige activiteiten, thank you all: Arno, Suresh, Andreas, Margriet, Ernst, Jan v. B.,
Bas, Gijs, Mithun, Chandra, Jan v. O., Hans J., Ruud, Hans H., Ard, Vincent, Marc,
Vipin, Sjaak, Sybren, James, Vinod, Lavinia, Michael, Ole, Koen, Anna-Jo, Gerrit,
Martijn, Leon, Ramon, Kirsten, Aafke, Frank, Marco, Nan en Niels.

De laatste halte sinds april 2011 is de afdeling theoretische chemie. Wegens mijn
focus op een afgerond proefschrift binnen 4 jaar heb ik helaas minder met afdelings-
activiteiten meegedaan. Gerrit, graag bedank ik jou voor de mogelijkheid om onder
jouw begeleiding onderzoek te kunnen doen. Het is voor mij een eer dat ik jouw eerste
promovendus ben die jij als hoogleraar promoveert. Ook wil ik Ad bedanken voor zijn
belangrijke suggesties gedurende het hele onderzoek. Gerrit en Ad, ik bewonder de
precisie waarmee jullie theorie bedrijven en beschrijven, wat mij betreft een niveau wat
ik altijd na zal streven. Ook wil ik Liesbeth bedanken voor het gebruiksklaar maken
van en de hulp bij haar scatteringcode. Dat was een flinke sprong voorwaarts in het on-
derzoek. De overige collega’s wil ik bedanken voor de goede sfeer, thank you all: Tijs,
Simon, Rik, Herma, Leendertjan, Thanja, Joost, Lei Song, Sasha, Dick en Micha l.

Gedurende mijn promotie heb ik ook twee jaar in de organisatie van de OlIMMpiade
deelgenomen. Graag bedank ik: Pieter, Marie-Louise, Frans S., Anja, Aafke en Kirsten
voor de goede en leuke samenwerking. Als (half-)theoreticus kun je niet zonder een
goed functionerend computernetwerk en de bijbehorende backups. In mijn ogen doet
C&CZ dat uitmuntend, daarvoor mijn dank aan: Bram, Ron, Ben, Erik, Peter, Wim
en Caspar. Daarnaast wil ik de secretaresses apart bedanken, vanwege hun bijzondere
rol in het reilen en zeilen binnen de universiteit. Bedankt voor jullie inzet en interesse:
Marian, Miriam, Erna, Magda, Ine en Marieke.

Ik prijs me gelukkig met mijn achterban die een belangrijke bijgedrage heeft geleverd
aan deze mijlpaal in mijn leven. Een hoop vrienden en familie bedank ik voor hun inte-
resse. Pa, ma en Nicole, jullie wil ik bedanken voor jullie onvoorwaardelijke liefde, steun
en vertrouwen. Robbert en Marja, schoonpa en-ma, ik heb jullie leren kennen tijdens
mijn promotie, bedankt voor jullie interesse en steun. Aryan, je hulp en vriendschap
gedurende de promotietijd is voor mij erg waardevol geweest, bedankt.

Lieve Alvera, verliefd, verloofd, getrouwd, een nieuw thuis, onze prachtige dochter
Linne en nu een volwassen promotiethesis. . . I count my blessings na 4 jaar heel hard
werken. Wat ben ik jou dankbaar voor wie je bent.

Dennis Grimminck
Nijmegen, 16 april 2013
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Scope of this thesis

This thesis covers my work on three research topics during my time as an interdisci-
plinary PhD student at the Institute for Molecules and Materials (IMM) in Nijmegen. I
was part of two collaborations between the research group of molecular and biophysics,
and both solid-state NMR and theoretical chemistry. The common factor between the
topics is the development and use of computational methods for spectroscopy, while
the range covers: experiment optimisation, data analysis, and actual prediction of
experimental results.

This thesis is structured in a modular fashion: introduction to the subject, followed
by the relevant paper(s). The first two topics are from the field of solid-state NMR
and involve the heuristic computational approach hinted to in the title of this thesis.
Both topics have in common that evolutionary algorithms are used for either, on-
spectrometer optimisation of radio-frequency homonuclear decoupling pulse shapes, or
to find the interaction parameters that provide the best match between simulation and
experimental quadrupolar NMR data. These (heuristic) algorithms are a tool (not the
goal!) to obtain the optimal solution by trial-and-error learning.

The third topic is from the field of molecular spectroscopy, where the influence
of atomic collisions on the absorption of light by an oxygen molecule is theoretically
studied and compared to experiment. The theory uses first principles to describe the
physics, which means that only the fundamental constants and laws of physics are used.
It therefore leads to a deterministic (one straightforward way) approach to compute
the result and actually predict the experimental outcome. Hence the second part of
my title is explained. The author wishes the reader a pleasant reading of his thesis.
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CHAPTER 1

Nuclear spin interaction engineering in solid-state NMR:

Manipulation in Euclidian and spin space

They make ten thousands of revolutions per second and are exposed to precisely
tailored radio frequency (rf) pulse shapes. It is the daily routine for solid state
materials during NMR (nuclear magnetic resonance) experiments in the Goudsmit-
pavilion in Nijmegen. Measuring nuclear spin magnetisation provides information
about structure and dynamics at the molecular level. Nuclear spins, however, interact
in several ways with their surroundings. In this chapter I will show how spin systems
can be manipulated in such a way, that only the contributions of specific interactions
with the spin’s surrounding become visible.

translated and adapted from: Ned. Tijdschr. Natuurkd. 78 (2012) 152–155

1.1 Solid-state NMR for protons

When it comes to both signal strength and abundance, the proton (the hydrogen
nucleus) is the favourite NMR nucleus. A proton in a magnetic field has two quantum
states, spin up and spin down. With increasing field strength the relative population
of the up state increases, which we observe in the laboratory as a small magnetisation
of the solid state material along the field.

1



Chapter 1: Nuclear spin interaction engineering in solid-state NMR

With NMR we measure the magnetisation behaviour in time after the application
of an rf-field pulse. During the rf-pulse, up and down states form a collective quantum
superposition state with a small net nuclear spin correlation; in a classical picture
this can be imagined as a partial alignment of the nuclear spins. This is called the
excitation of coherence. In the laboratory we measure after the pulse a rotating, more
accurately a precessing, magnetisation around the magnetic field that continues for
(milli) seconds. During that time the collective quantum superposition state persists!

The main point is that the frequency of precession is equal to the energy difference
between the up and down state divided by Planck’s constant. The influence of the
molecular surroundings on the proton changes the energies of the states. Determination
of the individual precession frequencies in the overall magnetisation precession, directly
provides information about the chemical environment of the protons.

With chemical environment we mean the electron density of the hydrogen atom
and the influence of other nuclear spins in the vicinity. Figure 1.1 provides an example
of glycine in the solid state. The protons in the (white coloured) hydrogen atoms
interact with the electron density of the atom, which is indirectly influenced by the
chemical bonds. In figure 1.1 the inter-molecular proton-proton (magnetic dipole-
dipole) interactions are indicated with dotted lines. To keep a clear illustration, the
intra-molecular proton-proton interactions are not indicated.

Figure 1.1: A crystal structure of the amino acid glycine (white=hydrogen, red=oxygen,
blue=nitrogen, black=carbon) from the Cambridge Structural Database. The dotted lines
indicate several inter-molecular proton-proton interactions. Intra-molecular proton-proton
interactions are not shown.

Due to the relatively low sensitivity of the NMR technique, there has to be suffi-

2



Section 1.1: Solid-state NMR for protons

cient material to measure enough signal. Solid-state NMR experiments are regularly
performed on powders, which are relatively easily obtained in large enough quantities.
Here we use glycine as a model system for proton-proton interactions, due to the very
strong intra-molecular interaction between the CH2 protons, see figure 1.1.

Figure 1.2: (a) Spectrum of glycine in powdered form, the magnetisation precession is
measured directly after an rf-pulse. We use a ppm scale to report the position of the peaks
independent of the strength of the magnetic field. The precession frequencies scale directly
with the magnetic field strength. (b) Same measurement as in (a) but now the material is
spinning at 12,500 revolutions per second at the magic angle. (c) Experiment (b) with an
optimised rf-pulse shape between the signal acquisition events. The differences in electronic
structure surroundings of the protons now become visible.

A measurement of the magnetisation behaviour of glycine in powdered form results
in a broad spectrum of precession frequencies, as is shown in figure 1.2(a). This is
caused by the angular dependence of the proton-proton interactions, a number of which
are indicated with dotted lines in figure 1.1. The energy difference of the up and down
states depends on the angle of the inter-nuclear vector with respect to the external
magnetic field. In a powder all orientations are present, so there is a broad range of
precession frequencies. The spectrum in figure 1.2(a) does not have any characteristics
that provide information about the molecular structure.
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Chapter 1: Nuclear spin interaction engineering in solid-state NMR

1.2 Interaction engineering

Proton-proton interactions (couplings) thus dominate the measured spectra. The ty-
pical time scales of NMR, however, allow to manipulate the spin system in such a way
that the couplings effectively disappear. As the subtitle of this chapter suggests, we
can manipulate both in Euclidean (x,y,z) and nuclear spin (particle states) space. In
the first case we physically rotate the material and in the second we use rf-pulses, see
figure 1.3.

Nuclear spins are ideal molecular spectators, their states do not change radically
by normal chemical and physical processes, and they provide information about the
local surroundings at the molecular level. Solid-state NMR is therefore a very useful
technique to study materials with for example: disordered structure, proton exchange
processes, slowly progressing chemical reactions etc.

Coherences that are created, survive for (milli) seconds. This provides enough op-
portunities for electronics to perform measurements and manipulations. The precession
frequency of a proton in a typical 11.7 Tesla magnetic field is 500 MegaHertz. When
this proton is magnetically coupled to a neighbouring proton, this frequency can change
maximally about 30 kiloHertz. Because the rf-field has a frequency close to the 500
MegaHertz frequency, the coupled proton sees a rotating rf-field of (maximally) 30 kHz.
To effectively manipulate the coupled proton, we have to perform our manipulations
within a precession (about 30 microseconds).

This time scale is easily covered by electronics. The shaping of rf-pulses and mag-
netisation detection in current state-of-the-art NMR spectrometers is possible with
respectively 0.2 and 0.125 microseconds. The maximum for mechanical rotation cur-
rently lies at a stunning 110,000 revolutions per second!

1.3 Decoupling by rotating the material

The most important dipole-dipole interaction-energy term is proportional to

Edip.dip. ∝ 〈3 cos2 θ − 1〉
θ is the angle between the inter-nuclear vectors (dotted lines in figure 1.1) and the
external magnetic field. By fast rotation of a material containing protons, the positions
of the protons change so quickly, that on average the proton-proton interactions appear
to only act along the axis of rotation.

At the magic angle θ=54.74◦ the interaction energy given in the boxed equation
above is zero; at this angle the dipoles do not experience each others field. In NMR
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Section 1.4: Decoupling using rf-pulses

experiments on solids, the materials are often spun at this angle, see figure 1.3, in order
to minimise the proton-proton interactions. See figure 1.2(b) to see the influence of
magic angle spinning on the spectrum of glycine.

We can now differentiate NMR of solids from NMR of liquids. In liquids, e.g.,
glycine dissolved in water, molecules can move freely among each other and rotate
around their own axes. The dipole-dipole interaction is therefore a less important
interaction in the field of liquid state NMR (except for large molecules). Unfortunately,
dissolving solid state materials is not the way to study the molecular structure of the
solid state.

air

Figure 1.3: Illustration of a material spinner in the rf coil. The spinner contains the material
under study and is powered by an air stream. The whole system is at the magic angle with
respect to the magnetic field B.

1.4 Decoupling using rf-pulses

The use of rf-pulses for effectively removing proton-proton couplings is conceptually
challenging. With coupling we mean quantum states that interact with each other.
In our case this means the up and down states of two or more protons, that have a
magnetic dipole-dipole interaction.

When two protons are close in space, the energies of the up and down states change,
and so do the precession frequencies. Additionally, the states also start a sort of flip-flop
motion; when the spin of one proton flips, the same happens to the other proton, but
in the opposite direction so that the energy is conserved. To simplify the explanation
we change one of the two protons for a fluorine-19 nucleus. Due to the difference in
precession frequencies of the two nuclei, the flip-flop motion does not happen here.
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Chapter 1: Nuclear spin interaction engineering in solid-state NMR

The most simple experiment to decouple the proton and fluorine states consists of
the application of a constant rf-field resonant with the fluorine nuclear spin. The up
and down states of the fluorine nucleus will now rapidly alternate and the proton will
effectively experience no difference between the fluorine states. By measuring at the
proton frequency, the decoupling rf-field is not resonant with the proton resonance, we
obtain the signal of a proton without interaction with the fluorine.

If we consider the system of two coupled protons, the decoupling approach men-
tioned above does not work. A resonant rf-field will make both protons rapidly alternate
between up and down states, so they will appear to stand still with respect to each
other. Additionally, there is the flip-flop motion of the coupled protons with equal
transition frequencies. A suitable rf-field decoupling should therefore be capable of
destructively interfering the flip-flop and up/down alternation mechanism. This will
either require several rf-pulses or a shaped pulse.

Furthermore, in contrast to the previous experiment, the measurement of the proton
precession cannot be done at a frequency that differs much from the rf-field frequency.
With this in mind, proton-proton decoupling experiments involve measuring between
the rf-pulses. When decoupling is efficient, the magnetisation will behave as though
there are no proton-proton couplings.

1.5 Real-time pulse optimisation

The description in the previous sections was focused on isolated proton-proton spin
systems. In practice protons form a strongly coupled network, as illustrated in figure
1.1. This means the proton precession frequencies are distributed over a broad range,
so either magic angle spinning or pulse sequences are not effective enough. Therefore
in the state-of-the-art experiments, mechanical rotation is combined with rf-pulses.

The subject of the next chapter is the on-spectrometer optimisation of the rf-pulse
shape for this type of experiment. Every measurement of the spectrum of glycine is
carried out with a different pulse shape. An evolutionary algorithm (EA) is used to
vary the parameters that determine this shape. Figure 1.4 visualises how complicated
such a pulse shape can become.

The use of an EA for our purpose has several advantages. EA’s optimise a popula-
tion of trial solutions, which makes it less likely for the algorithm to get trapped in a
local optimum, since the information of the entire population is used to generate the
next population. EA’s can handle a large number of parameters. Furthermore, the
only application-specific information needed by the algorithm is a figure of merit for
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Section 1.6: Answers and perspectives

the quality of the trial solutions. This allows the application to function as a black
box.

The result of the approach elaborated on in the next chapter, and the gain of the
combined mechanical rotation and the new rf-pulse shape is illustrated in figure 1.2.
Moving from the spectrum of figure 1.2(a), via 1.2(b) to 1.2(c), shows an impressive
gain in spectral resolution. The result in figure 1.2(c) shows peaks that correspond to
the different electronic structure surroundings of the protons in glycine.

Figure 1.4: Visualisation of a typical rf-pulse shape for the experiments on glycine in the
next chapter. Figure 1.3 provides an illustration of a coil that is used to generate such a
pulse. The change of the rf-field in time is presented in the rotating frame of the proton. The
pulse has a constant amplitude and changing phase.

1.6 Answers and perspectives

In the next chapter a detailed explanation is given of the on-spectrometer optimisation
of decoupling pulse-shapes with the use of EA’s. Our approach uses as many degrees
of freedom as the number of parameters chosen for the pulse shape. This freedom
is used to try and answer a research question that was still unanswered in this field
of research, namely Does proton-proton decoupling at very high rf-field work (more)
efficiently? For the particular case of couplings between different nuclear species,
for example the fluorine-proton coupling mentioned above, this is known to be true.
Experiments will be performed at very high rf-fields that are a factor of 3 or 4 stronger
than achievable in conventional NMR setups [2].
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CHAPTER 2

EASY-GOING DUMBO on-spectrometer optimisation of

phase-modulated homonuclear decoupling sequences in

solid-state NMR

A one-step many-parameter optimisation scheme for phase-modulated proton homo-
nuclear decoupling sequences in solid-state NMR is presented. Phase-modulations,
parameterised by DUMBO Fourier coefficients, were optimized using a Covariance
Matrix Adaptation Evolution Strategies algorithm. Our method, denoted EASY-
GOING DUMBO, starts with featureless spectra and optimises proton-proton de-
coupling, during either proton or carbon signal detection. Optimisations at moder-
ate magic angle spinning (MAS) frequencies and medium radio-frequency (rf) field
strengths resulted in solutions closely resembling (e)DUMBO. Application of EASY-
GOING DUMBO for optimisation at very high 680 kHz rf field strength, 12.5 kHz
MAS on a 400 MHz NMR spectrometer resulted in a new solution, with competi-
tively resolved proton spectra.

adapted from Chem. Phys. Lett. 509 (2011) 186–191

2.1 Introduction

Research on proton homonuclear decoupling in solid state NMR has been receiving
considerable attention in the last decade. Contemporary state of the art techniques

9



Chapter 2: EASY-GOING DUMBO (paper)

are the Combined Rotation And Multiple Pulse Sequence (CRAMPS) methods [3].
These techniques rely on the shaping of radio-frequency (rf) pulses and the interplay
between rf cycle and magic angle spinning (MAS) frequencies. This is, considering
the capabilities of contemporary NMR spectrometers, a large parameter space. Two
categories of approaches to find efficient homonuclear decoupling sequences can be dis-
tinguished. The first category can be considered as the ’bottom-up’ approach; starting
from the theoretical description of the direct dipole-dipole interaction, an averaging
scheme is developed. Typical examples are : FSLG [4, 5, 6], PMLG [7, 8, 9] and RNN/2

n

[10] sequences. These methods are effective as well as insightful in understanding the
process of averaging homonuclear couplings. Their performance for large spin systems
and non-ideal rf pulses is, however, difficult to model.

To the second category belong the ’top-down’ approaches. These subject the spin
system, by numerical simulations (in silico) or experimentally (on-spectrometer), to
a large variety of pulse shapes to optimise the decoupling efficiency. This encom-
passes the area of optimal control [11], and the method of greatest relevance to this
paper, (e)DUMBO (decoupling using mind-boggling optimisation) [12, 13]. DUMBO
is the in silico optimisation of phase-modulated homonuclear decoupling pulse shapes,
by simulating the response of a coupled homonuclear two-spin system for a range in
dipole-dipole couplings and rf field strengths. The DUMBO method produced a pulse
shape whose effectiveness competes with and often outperforms the other methods
mentioned above. Unfortunately, understanding the exact mechanism behind the re-
sulting phase-modulation is not trivial, as can be expected from a ’top-down’ method.
DUMBO also has its on-spectrometer implementation named e(xperimental)DUMBO
[14], which takes the DUMBO pulse shape as the initial point for a local optimisation,
driven by a simplex algorithm. An important advantage of this approach is that the
actual spectrometer performance is inherently taken into account. Recently a new ver-
sion of eDUMBO, named eDUMBO-PLUS [15], was reported for use in the ultra fast
MAS regime. Here initial points for local optimisation were found experimentally by
a randomised search for well performing phase-modulations.

In this paper we report a method that simplifies eDUMBO by making the optimisa-
tion possible in a single step. We explored the use of a Covariance Matrix Adaptation
Evolution Strategies (CMA-ES) algorithm [16] (an evolutionary algorithm), known as
a robust many-parameter optimiser, for on-spectrometer optimisation. We report our
success in reaching convergence in the whole twelve-parameter space spanned by the
DUMBO parameterisation. After optimisation, starting from featureless spectra, we
confirm the optimal performance of the (e)DUMBO pulse shapes, thereby benchmark-
ing our approach for future work. We chose the adjective EASY-GOING (Evolutionary
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Algorithms Serving Your Global Optimisation Improvement Needs Gladly), which em-
phasises the use of evolutionary algorithms which have a broad range of applications.
The current application is therefore denoted EASY-GOING DUMBO (EGD).

To determine the agreement of the experimental results with theory, we simulated
the experiments for the optimised phase-modulations. The outcomes show that in the
current regime of moderate spinning speed and medium rf field strength theory agrees
well for these complex pulse shapes. We conclude this paper by presenting our first
results for EGD decoupling at very high rf field strengths. To achieve this field strength
we used a recently presented micro-magic-angle spinning (µMAS) probehead for ap-
plication in high-resolution proton solid-state NMR of nanoliter sample volumes [2].
Although this probehead allows the generation of proton rf field strengths of 800 kHz
with about 10 W of rf power, we found that the optimal proton spectral resolution is
achieved at medium rf field strength when using FSLG and (e)DUMBO. We attributed
this effect to rf phase transients that scale with the rf field strength [17]. In this paper
we show that our EGD approach obtains a pulse sequence that achieves a competitively
resolved proton spectrum at very high rf fields.

2.2 Materials and methods

2.2.1 Experiment

1H and 13C spectra were recorded on a 300 MHz (7.1 T) Varian NMR spectrometer
with VNMRS console and a Bruker 2.5 mm double resonance probe tuned to 300.1
and 75.8 MHz, respectively. The samples were spun at 12.5 kHz in 2.5 mm ZrO2 spin-
ners. [α-13C,15N] alanine and [15N] glycine samples were purchased from Sigma-Aldrich
and used without further purification. The samples were restricted to volumes of ap-
proximately 11µL, so that they reside well within the coil and rf inhomogeneity effects
are limited. Experiments reported at very high rf field strength were performed in a re-
cently presented µ-MAS probehead [2]. We performed these experiments on a 400 MHz
(9.4 T) Varian spectrometer under 12.5 kHz MAS, additional settings are shown in ta-
ble 2.1. Glycine was held in a fused-silica sample container with an outer diameter of
400µm and an inner diameter of 320µm with a sample volume of 70 nL.

Figure 2.1(a) shows the pulse sequence to obtain J-resolved 13C spectra. For every
new experiment, during the EGD optimisation, a new phase-modulated pulse shape
is applied while the carbon signal is detected. These experiments were performed on
the [α-13C,15N] alanine sample, because efficient proton-proton decoupling of alanine’s
α-13CH proton, reveals a doublet caused by the JCH-coupling with the α-carbon. We
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used four scans per experiment, and set the length of a phase-modulation block τpmb,
determining the rf cycle time τc, to correspond to a 6π pulse. Acquisition on the
carbon channel was synchronised with this cycle time. Further experimental settings
are shown in the first row of table 2.1.

CP

CP

(a) (b)

Figure 2.1: (a) Two-channel pulse sequence for assessing the proton homonuclear decoup-
ling performance via carbon detection. The experiment consists of cross polarisation followed
by continuous phase-modulation on the proton and acquisition on the carbon channel. The
first row in table 2.1 displays settings for the performed carbon detection experiments on
the [α-13C,15N] alanine sample. (b) Single channel pulse sequence employing proton homonu-
clear decoupling alternated with detection in inserted intervals (windows). ⊘ indicates super
cycling with alternating [0, π] phase. The second and third row in table 2.1 show the exper-
imental settings for the reported proton detection experiments on the [15N] glycine sample.

Figure 2.1(b) illustrates the pulse sequence for obtaining high-resolution directly
detected 1H spectra. The homonuclear decoupling phase-modulation is applied be-
tween the detection windows. This experiment was carried out on glycine. Efficient
decoupling will resolve the two lines of the strongly coupled α-CH2 protons, each with
a different chemical shift, making it a reliable indicator of decoupling efficiency. Ex-
perimental settings are shown in the second and third row of table 2.1. We used four
scans per experiment and define the rf cycle time as the sum of the pulse and detection
window durations τc = τpmb + τwin.

During the experiment, the phase-modulation is super cycled to create a z-rotation
homonuclear decoupling sequence in order to remove zero-frequency contributions from
the spectrum without having to optimise an additional pre-pulse prior to the homo-
nuclear decoupling sequence [18]. The orientation of the effective field during the
homonuclear decoupling sequence determines the optimal choice of the phase and flip-
angle of this pre-pulse to rotate the longitudinal proton magnetisation into a plane
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that is perpendicular to the effective field resulting in an artifact-free spectrum [18].
This results in a higher scaling factor for the isotropic chemical shift compared to a
super cycled sequence, for example DUMBO-1 has a theoretical scaling factor of 0.52
[12], whereas in the super cycled version this reduces to 0.41. However, we chose
super cycling to guarantee spectra without artifacts, since the effective field of the
homonuclear decoupling sequence is changing during the optimisation of the DUMBO
Fourier coefficients, and hence would in principle require to adjust the pre-pulse in each
iteration.

The scaling factor of the chemical shift was determined experimentally, as described
in [2]. A series of two-dimensional proton spectra were taken as a function of the rf-field
offset. In these experiments, the homonuclear decoupling sequence from figure 2.1(b)
is applied during the t1 evolution, while the proton signal is detected in the t2 domain
without decoupling. This correlates the scaled to the unscaled chemical shift positions.
When all 2D data is gathered in one graph, a linear fit through the peak positions is
used to correct the scaled spectrum. The axis of the scaled spectrum is divided by the
slope of the fit (the scaling factor) and the offset of the fit is subsequently added.

Fig. sw νrf ν
13C
off ν

1H
off τpmb τres τwin τrd τat

2.4(a) 33.8 101.4 1.0 -1.0 29.6 0.20 − 3.0 30.0

2.5(a) 33.8 140.0 − 0.0 25.6 0.25 4.0 2.0 18.0

2.6 89.3 680.0 − -2.0 8.8 0.20 2.4 4.0 15.0

Table 2.1: Experimental settings for pulse sequences illustrated in figure 2.1. Settings are
related to the figure displaying the experimental data. From left to right: spectral width,
nutation and rf field offset frequencies in kHz; phase-modulation block, phase resolution and
acquisition window timings in µs, recycle delay in s and acquisition time in ms.

2.2.2 Optimisation strategy

The CMA-ES algorithm

Evolutionary Algorithms (EA’s) are based upon the Darwinian theory of a natural
selection process occurring by reproduction and mutation of genes in a chromosome
leading to only best adapted individuals. The optimisations mentioned in this paper
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were performed with an Evolution Strategy (ES) algorithm, a class of EA’s, which start
with one or a population of parent(s). A parent is a trial solution, that corresponds to a
vector of application and strategy parameters. Application parameters are in this case
the Fourier coefficients parameterising the phase-modulation. The parent generates
offspring in a mutative step-size fashion that depends on the strategy parameters. The
fitness (solution performance) of these children is checked and new parents are chosen.
There are several different strategies for the generation of the offspring as well as the
choice of the next parent(s). For a more detailed description see [19].

For this work, the CMA-ES algorithm developed by Hansen and Ostermeier [16]
was used. In this algorithm the mutative steps are dependent on application-parameter
covariance which are determined by taking into account the effect of previous mutations
on offspring performance. The algorithm is reported reliable for both local optimisation
and global optimisation [20]. The CMA-ES algorithm does not leave the choice of
strategy parameters open to the user. The only meta-parameters available are parent
and offspring population size.

Algorithm – spectrometer interface

An interface was written to link the CMA-ES algorithm, part of the automatted fit-
ting program written by Meerts et al. [21], to the VNMRJ program controlling the
spectrometer.

Optimisation parameters of the phase-modulation were chosen according to the
DUMBO parameterisation [12]

ϕ(τ) =











0 ≤ τ < 1
2

:
6
∑

n=1
an cos(2πnτ) + bn sin(2πnτ) ,

1
2
≤ τ ≤ 1 : ϕ(1− τ) + π ,

(2.1)

with τ = t
τpmb

the phase-modulation progress, and Fourier coefficients an and bn the
optimisation parameters in units of 2π. The discretisation of the phase-modulation is
determined by the phase resolution τres, see table 2.1. A phase of π is added in the
second half of the phase-modulation to ensure an rf propagator equal to unity at time
τpmb, at which point the spin operator part of the dipole-dipole Hamiltonian should be
averaged to zero. The ‘1 − τ ’ argument in this part of the phase-modulation ensures
time reversal symmetry to cancel odd order terms in the Magnus expansion [22]; a
property used to reduce simulation complexity in the DUMBO approach.

The quality of the spectrum or induction decay is determined by evaluation of the
relevant fitness function. Note that fitness needs to be maximised in analogy to the
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‘survival of the fittest’ concept. For the proton detection experiment on glycine this
function was defined as the path length the transverse magnetisation traveled in the
complex plane

̥ =
∑

n∈{b+s,...,b+ms≤N}

|pn − pn−s| . (2.2)

Here is N the number of time-domain datapoints, b the index of the starting dat-
apoint, 1

s
the fraction of spectral width that is observed for the fitness evaluation, m

all positive integer values that match the condition n < N , and pn the n-th complex
datapoint. All presented proton detection experiments are optimised with b equal to
three and s equal to six.

The fitness function for the carbon detection experiment on alanine was defined as
the difference between the average peak intensity of the doublet (α-13CH J-coupling),
and the minimum between the peaks. We will refer to this as the dip-depth between
the peaks. To ensure a non-zero feedback for the CMA-ES algorithm at all times,
one sixteenth of the maximum spectrum intensity in a pre-set frequency domain was
added. For the reported carbon detection experiment the pre-set domain was set to
600 Hz centered at the carrier frequency. This domain was large enough to encompass
the width of the expected doublet and to exclude the spectral part not of interest to
the optimisation.

Algorithm settings

From the twelve Fourier coefficients in equation 2.1, eleven were allowed to vary from
-0.5 to 0.5; the twelfth coefficient could only vary over half of this domain. The latter
choice excludes phase-modulations that only differ by an overall sign change. We
observed experimentally that the spectrum does not change by applying −ϕ(τ) instead
of ϕ(τ).

For the CMA-ES algorithm, a population of 48 with 24 parents and 100 generations
was found to be a suitable choice for convergence of the twelve parameter problem. Ty-
pical optimisation durations were between ten and sixteen hours. Experiments reported
here have been done for different random starting populations.

2.2.3 Simulation

All simulations mentioned, were performed using SPINEVOLUTION [23]. The alanine
spin system for the carbon detection experiment, nine protons and one carbon nucleus,
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was taken from [24] (shown in figure 2.2), and adjusted by addition of a JCH-coupling
of 140 Hz for the alpha carbon.

Figure 2.2: Ten spin system, one carbon-13 atom and nine protons, for the alanine simula-
tions. The illustration was taken from [24].

The pulse sequence was matched to the part after CP of figure 2.1(a), hence starting
with carbon transverse magnetisation. Furthermore, settings according to section 2.2.1
were used, including rf cycle synchronised detection.

For simulations of the proton detection experiments on glycine, an effective seven-
spin system was set up. This was done to reduce the time needed for the calculations,
since the unit cell of solid-state glycine contains a large number of protons. Additionally
the reduced spin system provides the possibility to perform in silico optimisations,
these are not presented in this work. Figure 2.3 illustrates what combinations of
nuclei were chosen, to form effective spins that mimic the surrounding direct dipole-
dipole couplings to neighbouring glycine molecules. An effective spin was created by
the summation of the interaction tensors of the grouped spins, and diagonalisation of
the resulting interaction tensor to obtain the interaction parameters. The simulation
was set up using the experimental settings of section 2.2.1. Simulation started from
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Figure 2.3: Effective seven-spin system for the glycine simulations.

transverse proton magnetisation and included super cycling. The calculated induction
decay proved to be invariant to the choice of detection timepoint in the window. For
practical reasons, we then synchronised the detection with the rf cycle time.

In both simulations relaxation was not explicitly taken into account. The simulated
induction decays were therefore exponentially apodised. Typical calculation times, for
a single spectrum, were between seven to ten hours on five 2.5 GHz Opteron cores.

2.3 Results and Discussion

2.3.1 Optimisation of proton homonuclear decoupling during carbon de-
tection

The outcome of EGD optimisation of proton homonuclear decoupling detected in-
directly via the carbon signal of [α-13C,15N] alanine, is shown in figure 2.4(a). For
comparison we added eDUMBO-112.5 data, taken with the same experimental settings
as mentioned in section 2.2.1.

A comparison of the spectra reveals a better linewidth, but also stronger J-coupling
scaling for the EGD result, so that the effective resolution is comparable. Full width
half height for our pulse shape is 68 Hz, and 94 Hz for the eDUMBO-112.5 data. The
obtained phase-modulations are similar, and it is important to note that the phase-
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Figure 2.4(a) Figure 2.5(a) Figure 2.6

n an bn an bn an bn

1 + 0.01911 + 0.24799 + 0.07188 + 0.13788 − 0.03859 + 0.25292

2 + 0.00108 + 0.15656 + 0.02961 + 0.18771 + 0.08175 + 0.23386

3 + 0.01726 + 0.10816 + 0.06718 + 0.01731 + 0.26925 − 0.15763

4 − 0.02958 + 0.01289 + 0.00219 + 0.12842 − 0.18227 + 0.25675

5 + 0.04037 + 0.08059 + 0.02404 − 0.04593 + 0.00595 − 0.10046

6 − 0.03763 − 0.00842 + 0.04448 + 0.05531 − −

Table 2.2: Coefficients, in units of 2π, found by EGD decoupling for the carbon and proton
detection experiments.

modulation coefficients, see table 2.2, reaffirm the observation by Elena et al. [14],
that cosine coefficients have a negligible contribution. The compromise between sca-
ling of the J-splitting and the carbon linewidth makes it difficult to determine which
phase-modulation performs best. Ultimately, it is the choice of fitness function that
determines the outcome. The choice to use the dip-depth of the doublet, appears to
be more favourable towards smaller linewidth. Conversely eDUMBO-112.5 is the out-
come of using a measure that favours a splitting size equal to the theoretical maximum
scaling of 0.57 (for the static-sample case) and maximisation of peak intensities.

Figure 2.4(b) shows how simulation is able to predict the trend in scaling of the
J-coupling for the complex eDUMBO and the EGD phase-modulations. Apparently
the behaviour of the spin system as a result of the complex pulse shapes is near ideal.

2.3.2 Optimisation of proton homonuclear decoupling during windowed
proton detection

Figure 2.5(a) shows the resulting spectra for employing EGD homonuclear decoupling
with windowed acquisition of the proton signal. We experimentally determined a sca-
ling factor of 0.56. Data obtained by the same experimental settings and the DUMBO
phase-modulation is displayed in the figure for comparison.

Comparison of the phase-modulations shows small deviations, which translate into
small differences of the spectra. It is remarkable that our EGD phase-modulation is
so similar to DUMBO, which is obtained in silico for a two-spin system. This may be
considered as a benchmarking of our method, as discussed below.

Figure 2.5(b) shows simulation results. We scaled the simulated spectra with the
experimental scaling factors. The peak positions for the CH2 peaks are reproduced.
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Figure 2.4: (a) Outcome of EGD proton homonuclear decoupling (continuous line) for the
carbon detection experiment on [α-13C,15N] alanine. The spectrum, caused by the α-13CH
J-coupling, and phase-modulation are compared to eDUMBO-112.5 data (dotted line). Ex-
perimental linewidths at FWHH are ∆(CH)=68 and 94 Hz respectively. Phase-modulations
are shown in the inset, based on the coefficients in table 2.2 and [14]. (b) Simulation results
for the experiment of figure 2.4(a). A spin system consisting of nine protons and one carbon
nucleus was used. Simulated induction decays were apodised to match the experiment.

With the use of the experimental scaling factors for chemical shift correction, a nearly
one-to-one mapping of experiment and theory is obtained. Chemical shift values for
spin number one, two and three in figure 2.3 were determined from the scaled spectrum
in figure 2.5(a). It is remarkable that theory can correctly predict the different out-
comes of slightly distinguishable pulse shapes, regarding the possibility of pulse shape
inperfections in the experiment and the presence of detection windows in the pulse
sequence.

The fitness function used for this optimisation seems to be a quite ’natural’ choice,
no incorporation of unphysical weighting factors to maximise scaling and minimise
linewidth. The path length of the magnetisation in the complex plane becomes longer
with increasing dephasing time and the presence of higher or more frequencies. Addi-
tionally this fitness function is more generally applicable, since it is independent of the
number of peaks.

Unfortunately, this fitness function proved to be impractical for optimisation of
the proton rf offset. The optimisation will maximise the offset, since that will result
in induction decays with faster oscillations. We also applied this fitness function (b
equal to three and s equal to five) for the carbon detection experiment. The resulting
spectrum was a singlet. This can be understood by the significantly different dephasing
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Figure 2.5: (a) Results for the proton detection experiment on [15N] glycine. Comparison
between EGD (continuous line) and DUMBO phase-modulations and spectra before (inset
upper right corner) and after correction for chemical shift scaling (main window). Experi-
mental unscaled linewidths at FWHH are ∆(NH+

3 )raw=160, 176 Hz and ∆(CH2)raw=112,
128 Hz and scaled ∆(NH+

3 )real=0.95, 1.12 ppm and ∆(CH2)real=0.67, 0.76 ppm respectively.
Phase-modulations, shown in the upper left inset, are based on the coefficients in table 2.2
and [12]. (b) Simulation of spectra in figure 2.5(a). The effective spin system is illustrated
in figure 2.3. Simulated induction decays are apodised to match the experimental data.

times for an uncoupled and a J-coupled carbon nucleus.

2.3.3 Convergence to (e)DUMBO solutions

Figures 2.4(a) and 2.5(a) show that the EGD optimisation results at moderate rf field
strength resemble those of (e)DUMBO. Especially the results for the proton detection
experiment are remarkable; two completely different approaches converge to the same
result. We find, viewing the carbon spectra, that the definition of the fitness func-
tion can steer the optimisation towards lesser scaling or linewidth. EGD experiments
performed by us with other fitness functions, for both carbon and proton detection
experiments, confirm this observation. From this point of view, the path length fitness
function for the proton detection experiment, is a translation of the purely theoreti-
cal DUMBO quality measure, into experimental parameters. This is important due
to the fact that DUMBO’s quality measure is designed for minimising the multi-spin
(couplings) and maximising single-spin operator coefficients, an ideal definition for a
single-objective (one fitness) optimisation. By the latter statement we would like to
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refer to the possibility of performing a multi-objective optimisation [25], where the
incommensurability of the two objectives can be studied in a more objective sense.

The same search space has been explored by different methods, both in silico and on-
spectrometer, resulting in similar optima, accepting a difference in measures of quality.
This suggests that the one-step EGD scheme successfully managed to navigate the
twelve parameter search space.

2.3.4 EASY-GOING DUMBO optimisations at 680 kHz rf field strength

In this section we demonstrate that the EGD method is not strongly dependent on the
initial choice of parameters, by applying it to new experimental conditions. For this
purpose we employed EGD homonuclear decoupling at very high rf fields of 680 kHz
using our recently presented µMAS setup [2] for high resolution proton NMR. The
solenoid coil that generated the strong rf field has an inner diameter of 450µm and a
Q-factor of 45.
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)

0 3 6 9 12 15
 time [ms]

Figure 2.6: Optimisation outcome for EGD proton homonuclear decoupling direct detection
experiment at 680 kHz rf field strength, 12.5 kHz MAS on a 400 MHz Varian spectrometer.
The phase-modulation, coefficients are shown in table 2.2, is presented in the inset as stairs to
indicate the small number of phase steps that was used. The experimental spectrum is shown
in the main window and its induction decay in the upper right inset. The chemical shift scale
of the spectrum was corrected with a scaling factor of 0.32. Experimental unscaled linewidths
at FWHH are ∆(NH+

3 )raw=93 Hz and ∆(CH2)raw=65 Hz and scaled ∆(NH+
3 )real=0.73 ppm

and ∆(CH2)real=0.51 ppm respectively.

For the experimental conditions mentioned in section 2.2.1, we determined that the
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DUMBO phase-modulation does not resolve glycine’s CH2 peaks. Figure 2.6 shows the
outcome of the EGD proton dectection experiment at 680 kHz rf field strength. Note
that we are applying 12π pulses to ensure the ratio τpmb

τres
, equal to 44 in this case, does

not become so small that no freedom of choice for the phases is left.
A value of 0.32 was estimated for the experimental scaling factor of the resulting

homonuclear decoupling sequence. Although this scaling is unfavourable, there is a
considerable improvement in the linewidth compared to the results depicted in figure
2.5(a), exceeding 0.1 ppm. For comparison we tabulated our results together with
results for several different direct proton detection methods for homonuclear decoupling
in table 2.3. This table shows that the unscaled linewidth in Hz for the CH2 protons
obtained in this work compares very favourably to the results published so far. For
a well-ordered crystalline compound this line width should be dominated by residual
proton-proton dipolar interactions which are efficiently suppressed by EGD at high rf
field strength which is remarkable, considering the fact that the spectra were obtained
under moderate 12.5 kHz MAS on a 400 MHz spectrometer. Unfortunately our scaling
factor is unfavourable but still results in a competitive effective resolution as compared
to the other methods summarized in table 2.3. We therefore anticipate better resolution
for EGD when implemented at higher external magnetic fields. It certainly encourages
further investigation of the potential of very high rf field homonuclear decoupling at
higher external fields and/or spinning speeds.

ref. seq. name νr νrf ν1H λ ∆real ∆raw

[kHz] [kHz] [MHz] [ppm] [Hz] [Hz]

[15] PLUS-1 65 170 500 0.73 0.33 165 120

[26] DUMBO-1 65 170 500 0.47 0.47 230 108

[27] wPMLG5xx̄
mm 10 99 600 0.47 0.47 282 133

[28] TIMES 10 170 900 0.35 0.6 550 192

this work DUMBO-1 12.5 140 300 0.56 0.76 229 128

this work EASY-GOING DUMBO 12.5 140 300 0.56 0.67 200 112

this work EASY-GOING DUMBO 12.5 680 400 0.32 0.51 203 65

Table 2.3: Comparison of experimental parameters and linewidths of the CH2 resonances
for different direct proton detection schemes, including our very high rf field results. All
resonances are from glycine except for [15] that used β-L-Asp-L-Ala. From [28] we determined
the line width by hand. Columns from left to right represent: reference, sequence name, MAS
and rf nutation frequency, main magnetic field strength, scaling factor and respectively the
scaled linewidth in ppm and Hz, and the unscaled linewidth in Hz.
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From numerical simulations (not shown) we obtained a scaling factor of 0.22 which
does not match the experimental value. We are not certain what causes this difference.
Super cycling is able to compensate effects from phase transient that can be described
by z-rotations [18]. However, our results indicate that this description might no longer
be sufficient at high rf fields. Further research is needed to elucidate these effects.

2.4 Conclusions

We presented the benchmarking and, furthermore, successful application of our one-
step EASY-GOING DUMBO phase-modulated homonuclear decoupling optimisation
scheme at 12.5 kHz MAS conditions. Starting from a random set of phase-modulations
and featureless spectra we managed to optimise to effective decoupling solutions. Op-
timisation of proton-proton decoupling at medium rf field strength, for both direct
proton and indirect carbon detection schemes, reaffirm the optimal performance of
(e)DUMBO, thereby benchmarking our method. Simulations of both experiments re-
produce the experimental scaling factors, which shows that theory can distinguish
between the influences of slightly differing pulse shapes. We end the paper with results
for EASY-GOING DUMBO optimisation at 680 kHz of rf field strength and 12.5 kHz
MAS on a 400 MHz NMR spectrometer. The optimisation resulted in a new pulse
shape that provides a competitive spectral resolution, given relatively low MAS and
main field requirements. In this case, simulation could not reproduce the scaling fac-
tor, for which we do not yet have a sound explanation, given that super cycling should
compensate for pulse transients. We consider the results at very high rf field strength
encouraging for further investigations of the potential of very high rf field homonuclear
decoupling.
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CHAPTER 3

Quadrupole NMR

3.1 Quadrupolar nuclei

The atomic nucleus is a composite particle consisting of protons and neutrons, referred
to as nucleons. Nucleons themselves consist of elementary particles named quarks.

Figure 3.1: Impression
of the quadrupolar charge
distribution surrounded by
points charges representing
the local structure of the
chemical site [29].

Properties of the nucleus emerge from the intrinsic proper-
ties of its constituent particles, e.g. spin and charge, com-
bined with their orbital motion. The total nuclear angular
momentum that results from the coupling of the particles’
spin and orbital angular momentum, is what is commonly
referred to as nuclear spin with quantum number I [30].

Most of the NMR active nuclei have nuclear spin I ≥ 1,
a few examples are shown in table 3.1. Note that in a
magnetic field the number of energy levels of these nu-
clei is 2I+1 (labelled by magnetic quantum number MI =
−I,−I+1, . . . , I), this means we no longer consider a two-
level spin system as was the case for the (uncoupled) pro-
tons in the previous chapters. The shape or charge distri-
bution of the nucleus is related to the nuclear spin quantum
number I. From a basic angular momentum theory treat-
ment of the multipole expansion describing the interaction between de nucleus and the
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electromagnetic field, follows that the highest electric multipole moment of the nucleus
is of rank 2I [30]. Odd rank multipole moments, such as the electric dipole moment,
are not present due to a parity conservation law from nuclear physics [31].

Consequently in addition to a magnetic interaction of the nucleus with the mag-
netic field, the nucleus may also have an anisotropic electrostatic interaction with its
surroundings. In practice the most important contribution is that of the quadrupole
moment of the nucleus, that interacts with the electric field gradient of the surrounding
charge distribution. An impression of this interaction is given in Fig. 3.1.

Spin Isotopic species (natural abundance)

1 2D (0.02%) 6Li (7.42%) 14N (99.63%)
3/2 7Li (92.85%) 9Be (100.00%) 11B (80.42%) 23Na (100.00%) 87Rb (27.85%)
5/2 17O (0.04%) 27Al (100.00%) 55Mn (100.00%) 85Rb (72.15%) 127I (100.00%)
7/2 43Ca (0.15%) 49Ti (5.51%) 51V (99.79%) 59Co (100.00%) 133Cs (100.00%)

Table 3.1: Several isotopes with a nuclear quadrupole moment and their natural abundance
(www.webelements.com).

3.2 Interaction parameters and local structure

The quadrupolar interaction is parameterised with the quadrupolar coupling constant
Cq and asymmetry parameter η. The expression for the interaction in its principal axis
frame (PAF ) is given by

ĤP AF
Q =

2πCq

4I(2I − 1)

{

3Î2
Z − Î2 + η(Î2

X − Î2
Y )

}

, (3.1)

with Î the nuclear spin operator. Further explanations of Eq. 3.1 are given in section
4.2.1. The focus of this section is the relation of these parameters to the structure
of a chemical site (nuclear spin atomic surroundings). Chapters 4 and 5 will then be
concerned with the quantification of these parameters by fitting experimental spectra.

Fig. 3.2 relates Cq to several atomic coordination structures of a central atom
with quadrupolar nucleus. For systems considered by NMR, the quadrupolar coupling
constant is typically of the order of several MHz. Cq is directly proportional to the
quadrupole moment of the nucleus, and the largest principal axes component of the
electric field gradient tensor at the position of the nucleus. It therefore quantifies
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Section 3.2: Interaction parameters and local structure

the strength of the interaction. On the left in Fig. 3.2 are symmetrical coordination
structures for which the electric field gradient at the nucleus cancels, hence Cq ≈ 0 MHz.
These are from top to bottom: cubic, octahedral and tetrahedral. Moving further to
the right this cancellation is more and more lifted, leading to an increase of the field
gradient experienced by the nucleus.

Figure 3.2: Relation between the quadrupolar coupling constant Cq and coordination struc-
tures of a central atom with a quadrupolar nucleus [29].

The second interaction parameter η is a measure for the asymmetry of the electric
field gradient, the definition is given in equation 4.4. It may take values ranging from
0 to 1. The η = 0 case is the prolate limiting case of the principal components of
the electric field gradient. There is cylindrical symmetry in the gradient. An example
of such a structure is the coordination most to the right in Fig. 3.2 with all charges
surrounding the central atom set equal. The η = 1 case is the oblate limiting case of
the principal components of the electric field gradient. Also here there is cylindrical
symmetry, but one principal component is equal to zero, leading to a planar field
gradient. An example of such a structure is again the most right coordination in Fig.
3.2, but with three neighbouring charges changed in sign.
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3.3 Quadrupolar interaction as a perturbation

As was explained in the first chapter, the NMR spectrum effectively summarises the nu-
clear spin precession frequencies present after coherence-excitation of the nuclei. These
frequencies depend on the energy differences between the nuclear spin levels. In the
strong magnetic fields (> 6 Tesla) used in NMR experiments, the Zeeman interaction
between the nuclear spins and the magnetic field dominates for the cases relevant to
this work. The quadrupolar interaction may than be treated as a perturbation.

Fig. 3.3 presents the energy level diagram for a quadrupolar nucleus with spin 5/2
in an external magnetic field. From left to right the shift in energy of the levels is
illustrated, starting with the Zeeman interaction HZ followed by the first and second
order perturbation H1

Q and H2
Q of the quadrupolar interaction. The angular frequency

ωQ is defined as

ωQ =
6πCq

2I(2I − 1)
. (3.2)

It is important to note that the energy difference between levels with the same
value for |MI | remain unchanged by the first order shift of the quadrupolar interaction.
This has significant consequences for the range of precession frequencies (width of the
spectral lines) present in the spectrum. To illustrate this, Fig. 3.4 shows a 23Na (I=3/2)
spectrum of powdered NaNO3 for which both the central |MI = 1/2〉 ↔ |MI =−1/2〉
transition and the satellite transitions |MI = ±3/2〉 ↔ |MI = ±1/2〉 are present. It
is ultimately the anisotropy of the quadrupolar interaction combined with the sum
over all crystallite orientations that is responsible for the typical shape. The central
transition is the sharp line in the middle, while the wide lines at the base are the
satellite transitions for which the precession frequencies are determined by the first
order shift. The exceptionally small value for Cq of 337 kHz of the sodium chemical
site resulted in all 2I transitions (1 central, 2 satellites) to appear fully in this spectrum.

From this point on only the central transitions will be considered, since for larger
values of Cq the satellite lines become too broad for proper excitation and significant
spectral intensity contribution. To conclude, for integer I nuclei there is no central
transition, all transitions for these nuclei are broadened by the anisotropy of the first
order perturbation in Fig. 3.3. The rest of this introduction therefore is concerned with
half integer spin nuclei.
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Figure 3.3: The energy level diagram for a nucleus with spin I=5/2 [29]. The dominating
Zeeman interaction Hz is directly proportional to the magnetic field strength. Subsequently
the energy levels are shifted by a first H1

Q and second H2
Q order perturbation due to the quad-

rupolar interaction. Note that the symmetric transitions |MI〉 ↔ | −MI〉 are not broadened
by the first order shifts.

Figure 3.4: The 23Na spectrum of powdered NaNO3. Both central |MI = 1/2〉 ↔ |MI =
−1/2〉 (sharp peak) and satellite |MI = ±3/2〉 ↔ |MI = ±1/2〉 (broad line shape at the
spectrum basis) transitions are visible. Adapted from [29].
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3.4 Typical line shapes

This section is concerned with spectral lines that correspond to the central transition
(second order quadrupolar interaction), as discussed in the previous section. Fig. 3.5
illustrates typical powder line shapes for different values of the quadrupolar interaction
parameters. Powders are often used in solid-state NMR experiments as they are more
readily available and provide enough signal (contain enough spins). In this figure the
spectrum of a static (non-rotating) spin-system is given.

The difference between Figs. 3.5(a) and 3.5(b) shows that Cq determines the width
of the spectral lines, while η characterises the shape. Notice that the centre of gravity
of the spectral lines in both Figs 3.5(a) and 3.5(b) are shifted from zero. This is caused
by the isotropic part of the quadrupolar interaction called the quadrupolar induced
shift.

As was discussed in the first chapter, interaction anisotropy may be removed from
the spectrum by spatial averaging. In the case of the quadrupolar interaction, magic
angle spinning (MAS) can only partly reduce the line widths in the spectra, since the
interaction contains higher order angular dependent terms. In second order perturba-
tion theory of the quadrupolar interaction (Fig. 3.3), the precession frequencies for the
central transition of the quadrupolar nuclei are given by the expression used in chapter
5

νMI=−1/2→MI=1/2 = νiso + C
I,MI=1/2
0 νqis + C

I,MI=1/2
4 ν4(α, β) . (3.3)

Here νiso is the isotropic chemical shift, the CI,MI=1/2
0 νqis essentially determines the

quadrupolar induced shift, and CI,MI=1/2
4 ν4(α, β) is the only anisotropic term left after

complete spatial averaging by MAS. Additional removal of the latter contribution to
the spectrum will be the subject of section 3.6.

Simulations of the line shapes of the spin system of Fig. 3.5(b) under MAS condi-
tions are given in Fig. 3.6. Here Fig. 3.6(a) shows how incomplete averaging by MAS
introduces spinning side bands in the spectrum. These side bands are separated from
the central line shape in multiples of the MAS frequency, as the signal is modulated
with this frequency. If the spatial averaging is complete (fast enough MAS) only the
central shape remains as is shown in Fig. 3.6(b).
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Figure 3.5: Static spectral line shapes of the central transition of a nucleus with I = 3/2
in a magnetic field of 500 MHz 1H frequency as a function of η. (a) Cq = 1.0 MHz and (b)
Cq = 2.0 MHz. Spectra were simulated using SIMPSON [32].
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(a) 1.5 kHz MAS spectrum Cq = 2.0 MHz
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(b) 15.0 kHz MAS spectrum Cq = 2.0 MHz

Figure 3.6: Spectra of Fig. 3.5(b) at two MAS speeds. (a) 1.5 kHz MAS, incomplete spatial
averaging leads to spinning side bands on both sides of the central line shape. (b) 15 kHz
MAS, complete averaging leads to a line shape for which the precession frequencies present
are determined by Eq. 3.3. Spectra were simulated using SIMPSON [32].
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3.5 Excitation of quadrupolar nuclei

Quadrupolar nuclei are inherently multi-level quantum systems (2I+1 levels, with I≥
1). The application of an rf-pulse to the nucleus leads to a complex excitation of (multi-
quantum) coherences between the nuclear spin levels. This complicates the extraction
of quantitative information from experimental data, the subject of chapters 4 and 5,
such as relative chemical site abundances and quadrupolar interaction parameters.

Fig. 3.7 presents simulated signal intensities for the central transition of an I = 5/2
nucleus, after excitation by an rf-pulse with length τp and strength ωrf = |γB1/2|.
Each curve corresponds to a different ratio of ωQ (Eq. 3.2) and ωrf [29]. The signal
intensity is a function of the dimensionless pulse flip-angle; the angle over which the
magnetisation of a spin half nucleus would rotate due to the rf-pulse [31]. This figure
reveals that the signal differs substantially for different interaction strengths ωQ. From
this it follows that the relative abundance of different chemical sites in a material is
not necessarily reflected by their spectral intensity! This observation will receive more
attention in chapters 4 and 5.

Figure 3.7: Signal intensity for spin 5/2 nucleus (powder) as a function of pulse flip-angle.
The curves correspond to different ratios (ωQ/ωrf ) of quadrupolar interaction and rf-field
strength [29].

What may additionally be deduced from Fig. 3.7 is the excitation behaviour for
the non selective (ω1≫ωQ) and selective (ω1≪ωQ) excitation regime. In both regimes
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Section 3.5: Excitation of quadrupolar nuclei

the excitation curve simplifies to a sine function. For the rf-dominated non-selective
excitation regime, the time dependence of the signal intensity becomes proportional to
sin(ω1τ), while for the quadrupolar interaction dominated selective excitation regime
this becomes sin([I + 1

2
]ω1τ). Both regimes have a different signal amplitude.

In the intermediate regime of ω1 ≈ ωQ both the rf-field and quadrupolar inter-
action determine the response of the spin system. This leads to a complex excitation
behaviour. Fig. 3.7, however, illustrates that all quadrupolar interaction strengths have
the same linear excitation behaviour for small pulse flip-angles. In order to remain in
this linear regime, the experimentalist has the opportunity to choose a set of τp and
ωrf .

Figure 3.8: Experimental 55Mn (I = 5/2) MAS spectra of KMnO4 as a function of τp and
ωrf /2π = 48 kHz. The interaction parameters are Cq = 1.6 MHz and η = 0. Figure is adapted
from [33].

In practice ωrf should be chosen sufficiently large to excite the whole line shape,
which provides an upper bound for τp. Short pulses, however, result in a relatively large
loss of potential signal, as follows from Fig. 3.7. Depending on the capabilities of the
spectrometer and the strength of the quadrupolar interaction, this trade-off may result
in a distorted line shape as illustrated in Fig. 3.8. The latter provides an example of the
potential difficulties of obtaining accurate interaction parameters via the line shape.
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3.6 Multiple Quantum Magic Angle Spinning

In section 3.4 the typical MAS line shapes for the quadrupolar interaction were dis-
cussed. These line shapes are related to the anisotropic term in Eq. 3.3 and cannot be
removed from the spectrum by rotation at the magic angle. Although the line shape
contains information about the quadrupolar interaction, it may also hide information
about interactions of smaller magnitude, such as the chemical shift (nuclear spin - elec-
tron density interaction), or the presence of multiple chemical sites as shown in Fig.
3.9. The figure provides a good example of the need for ways to remove the remain-
ing interaction anisotropy, to obtain the information that there are actually four sites
underneath.

Figure 3.9: 23Na MAS spectrum of Na4P2O7. This spectrum consists of the overlapping
spectra of four different 23Na sites. Figure is adapted from [34].

Spatial averaging of the third term in Eq. 3.3, requires rotation of the spin system
at the angle of 70.12 or 30.56 degrees in addition to MAS. This is feasible in a double
rotation experiment, one rotor spinning inside another rotor, but it is relatively difficult
to realise [35]. Another solution is to perform a multiple-quantum magic angle spinning
(MQMAS) experiment [36]. This two-dimensional NMR experiment basically exploits
the fact that the interaction anisotropy is accurately described by this one anisotropy
term, for all symmetric (between states of equal |MI |) coherences. For example the
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Section 3.6: Multiple Quantum Magic Angle Spinning

symmetric triple quantum coherence frequencies in the F1 dimension are given by

νMI=−3/2→MI=3/2 = νiso + C
I,MI=3/2
0 νqis + C

I,MI=3/2
4 ν4(α, β) . (3.4)

With the mathematical manipulation, called shearing, Eqs. 3.3 and 3.4 can be sub-
stracted

ν ′ = νMI=−3/2→MI=3/2 −
C

I,MI=3/2
4

C
I,MI=1/2
4

νMI=−1/2→MI=1/2 , (3.5)

to obtain a new frequency coordinate free of the anisotropic term labelled the F1’
dimension.

In practice this manipulation should be performed on experimental data in which a
symmetric multiple-quantum-coherence is correlated to the single-quantum-coherence
of the central transition. This data is obtained from an MQMAS experiment, elabo-
rated on in chapter 5, with the pulse sequence as illustrated in Fig. 3.10. The sequence
starts with an rf-pulse with optimised length and strength to excite a maximum triple-
quantum-coherence, in this particular case. Subsequently a delay is incremented fol-
lowed by a pulse that converts the multiple-quantum coherence to the measureable
single-quantum-coherence.

t2t1

Figure 3.10: 3QMAS sequence, indirect t1 and direct (signal acquisition) t2 dimension are
shown in black, with coherence pathways in grey. The two pulses of length τ1 and τ2 provide
triple-quantum-coherence excitation and conversion, respectively. See also chapter 5.

Note that with ideal excitation and conversion, the MAS line shape is obtained in
the direct dimension. The efficiency of excitation of quadrupolar nuclei is, however, a
complex matter as was discussed in section 3.5. That is why accurate simulations of
the spectra are required. Chapter 5 will be dedicated to the quantitative analysis of
MQMAS spectra.

Fig 3.11(a) illustrates a simulated MQMAS spectrum, the Fourier transform of the
data collected with the pulse sequence of Fig. 3.10. Both spectral dimensions have the
anisotropic line shape (except for the width), visible in the projections in the figure.
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Figure 3.11: Illustration of the effect of the shearing transformation, revealing from the
experimental data of (a) the isotropic spectrum in the F1’ dimension in (b). The projections
are sum-projections.

Fig 3.11(b) shows the data of Fig 3.11(a) after the shearing transformation, that
introduces the new frequency coordinate F1’. The spectral line shape in this dimension
is a simple peak that is only determined by the isotropic part of the interaction.

To conclude, Fig. 3.12 shows the sheared 3QMAS spectrum of Na4P2O7 of which the
MAS spectrum is shown in Fig. 3.9 [34]. This two-dimensional spectrum has resolved
lines, in contrast to the MAS spectrum of Fig. 3.9, that show the presence of four
distinct chemical sites.

Figure 3.12: 23Na 3QMAS spectrum of Na4P2O7 [34]. The four 23Na sites, which all over-
lapped in the MAS spectrum of Fig. 3.9, are now resolved. From left to right: the projection
of the F1’ dimension, contours of the spectral lines, and slices through the spectrum.
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CHAPTER 4

EASY-GOING deconvolution: Combining accurate simulation

and evolutionary algorithms for fast deconvolution of solid-state

quadrupolar NMR spectra

A fast and accurate fit program is presented for deconvolution of one-dimensional
solid-state quadrupolar NMR spectra of powdered materials. Computational costs
of the synthesis of theoretical spectra are reduced by the use of libraries containing
simulated time/frequency domain data. These libraries are calculated once and with
the use of second-party simulation software readily available in the NMR community,
to ensure a maximum flexibility and accuracy with respect to experimental conditions.
EASY-GOING deconvolution (EGdeconv) is equipped with evolutionary algorithms
that provide robust many-parameter fitting and offers efficient parallellised compu-
ting. The program supports quantification of relative chemical site abundances and
(dis)order in the solid-state by incorporation of (extended) Czjzek and order para-
meter models. To illustrate EGdeconv ’s current capabilities, we provide three case
studies. Given the program’s simple concept it allows a straightforward extension
to include other NMR interactions. The program is available as is for 64-bit Linux
operating systems.

J. Magn. Reson. 211 (2011) 114-120
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4.1 Introduction

Quadrupolar nuclear magnetic resonance is a valuable tool in materials research. The
technique applies to atomic nuclei that posses a total angular momentum ≥1 and
thereby a quadrupolar moment [37]. This concerns over two-thirds of the NMR active
nuclei, hence the area of application for quadrupolar NMR is potentially large. Solid-
state NMR techniques help to study the interaction between the quadrupolar moment
of nuclear charge and the electrical field gradient (efg) generated by the chemical sur-
roundings; the microscopic system of a nucleus and its surroundings is known as a
site. The nucleus thereby acts as a probe for local structure, which typically extends
over several coordination spheres [38]. This makes quadrupolar NMR a particularly
sensitive technique for structural information from (partly) disordered solid-state ma-
terials, e.g. glasses, semiconductors and polymers, for example materials that cannot
be studied by X-ray techniques due to their lack of long range order.

Structural information contained in the experimental spectra can be extracted by
deconvolution in terms of quadrupolar interaction parameters and relative abundances
of different sites. This requires a deconvolution model, which accurately describes
the experiment and spin system at reasonable computational costs. Fitting programs
such as DMFit [39] and QuadFit [40] have their own dedicated model, which is opti-
mised towards low costs, but not versatility in terms of experimental conditions. Con-
versely, there are general purpose NMR simulation programs such as SIMPSON [32]
or SPINEVOLUTION [23], that are versatile in their capabilities to mimic experimen-
tal conditions and varying spin systems, but miss dedication for spectrum fitting. In
practise the quality of simulations of quadrupolar NMR spectra is mostly restrained
by computational costs, for example due to the need for orientational averaging of
crystallites for powder spectra. With this in mind we created a separation between
the computationally intensive simulations and the actual data-fitting, by the use of
second-party software, in the work presented here SIMPSON, to pre-calculate time or
frequency domain libraries that are subsequently used during the fitting procedure.
This approach allows, as for example in the case of Al0.5Ga0.5As (discussed below), the
calculation of a five-site spectrum, all sites with a quadrupolar parameter distribution,
in less than a second on a single 2.3 GHz processor core.

A second requirement for spectrum deconvolution is the choice of a suitable al-
gorithm to the fitting of parameters. If the experimental spectrum contains spectral
lines of multiple sites that are not well resolved, the deconvolution model becomes
more complex and the number of fit parameters increases. To our knowledge, only one
NMR fitting program [41] is able to handle this many parameters, by the use of genetic

38



Section 4.1: Introduction

algorithms. In combination with SIMPSON, this program was used to fit spectra of
Vanadium nuclei in haloperoxidases. It, however, is not readily available, and does
not separate the fitting from the time consuming simulation step. We introduce the
use of evolutionary algorithms [21], of which genetic algorithms are a sub-class, in the
EGdeconv program. The additional advantage of these algorithms is that they can be
efficiently parallellised, leading to an increased computation speed. Typical conver-
gence rates involve 100 iterations with a population of 30 trial-solutions. Assuming
the case of Al0.5Ga0.5As (discussed below), this amounts to 35 minutes for a typical
spectrum deconvolution. This calculation time is further reduced by the use of the
parallellised code on all available cores (and processors).

Deconvolution of spectra from (partially) disordered materials requires accounting
for distributions in interaction parameters, for example by variations in bond angles
and/or distances. For the quadrupolar interaction this corresponds to retrieval of the
distribution in quadrupolar coupling constant and asymmetry parameter. Czjzek et
al. [42] were able to determine the shape of such a distribution for random ordering. By
calculating the efg tensor components for a large number of random repositionings of
surrounding charges, they determined that the components are normally distributed.
Starting from this multivariate Gaussian distribution of the five independent efg tensor
components, they could analytically derive a probability density function for the quad-
rupolar interaction parameters. Le Caër et al. [43, 44] extended this model to express
the probability density function for a microscopic system with an ordered short-range
and disordered long-range surroundings.

Underlying structural variations influence the shape of spectral lines. Deconvolu-
tion of the experimental spectrum assisted by these models provides a way to indicate
and possibly quantify structural disorder. Currently Quadfit [40] allows the use of the
Czjzek model for data-fitting, but no fit-programs are readily available that apply the
extended model. Complementary to the microscopic Czjzek model, there is a more
macroscopic approach to quantify (dis)order that fixes the relative site abundances
given a crystal structure. This fixed set of abundances is related to an order para-
meter [38, 45], of which the value can be varied to range from disordered structure
to a targeted crystal structure. Fitting this parameter provides an indication of the
material’s structure.

The remainder of this paper will describe the EASY-GOING (Evolutionary Algo-
rithms Serving Your Global Optimisation Improvement Needs Gladly) deconvolution
program, of which the name emphasises its relation to EASY-GOING DUMBO homo-
nuclear decoupling [1], that used parts of the same program. We will briefly cover
required theory, discuss evolutionary algorithms and the program structure, followed
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by three case studies and finish with the program’s technicalities. In order to learn how
to use the program, the reader is referred to the up-to-date manual that is supplied to-
gether with the program and example input files at http://egdeconv.science.ru.nl.

4.2 Theory

4.2.1 The nuclear quadrupolar interaction

Atomic nuclei that have total angular momentum ≥1, possess a none-spherical charge
distribution and consequently an electric quadrupolar moment [37]. The Hamiltonian,
in units of angular frequency, for the interaction of this moment of the nuclear charge
distribution with the efg of the environment is given by [23, 46]

ĤQ =
∑

i

2πCi
q

2Ii(2Ii − 1)
Îi · Ṽi · Îi . (4.1)

Here i is the index of the quadrupolar nuclei and Îi and Ii the nuclear angular
momentum vector operator and its quantum number. Furthermore, the reduced efg
tensor Ṽi equals Vi divided by its largest principal component, by definition, VZZ . Ci

q

is the quadrupolar coupling constant. The general form of V and Cq is

Cq =
eQVZZ

h
and Vα,β =

∂2V

∂rα∂rβ

∣

∣

∣

∣

∣

r=0

, (4.2)

with V the electric potential at the position of the nucleus, rα its coordinates for
α=x, y, z and eQ the nuclear quadrupolar moment. From the form of equations 4.1
and 4.2, it follows that Cq determines the strength of the coupling and additionally
provides limits for the position of transition frequencies and, for powdered materials,
the width of the spectral lines. For illustrative purposes we rewrite equation 4.1 for
the case of a single quadrupolar nucleus in the principal axis frame (PAF) of the efg
tensor [46]

ĤP AF
Q =

2πCq

4I(2I − 1)

{

3Î2
Z − Î2 + η(Î2

X − Î2
Y )

}

. (4.3)

Here the asymmetry parameter η is defined as

η =
VXX − VY Y

VZZ

. (4.4)
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It provides symmetry information of the efg at the nucleus. The asymmetry pa-
rameter can assume values between zero and one, adhering the convention |VZZ | ≥
|VY Y | ≥ |VXX |. Combined with the requirement for a traceless efg tensor, the quadru-
polar interaction is fully described with Cq and η as parameters.

The dominating Zeeman interaction in NMR makes the form of equations 4.1 and
4.3 impractical. Advanced theory for a convenient perturbation treatment of the quad-
rupolar interaction under magic angle spinning and radio-frequency pulse conditions is
extensively treated in literature [32, 23, 46]. To conclude, it should be noted that the
explicit angular dependence of the equations in this section is deliberately not shown.
In simulations, the response of the powder is assumed equal to the sum of all crystallite
responses. This sum will therefore include all crystallite orientations present, leaving
only Cq and η to parameterise the induction decay/spectrum.

4.2.2 Parameter constraints

Reproducing data by fitting does not always lead to a better understanding of the
underlying physics. Essentially the more parameters are involved the more degrees of
freedom are available to provide a high quality fit. It is therefore important to search for
parameter constraints. These may be obtained from other experimental data, physical
limits etc. EGdeconv provides many ways to constrain or couple parameters, which
is partly shown below and fully documented in the manual. Another possibility is to
impose constraints via (physical) models, as will be introduced in the next two sections.

(Extended) Czjzek distribution

One of the subtleties is that the use of quadrupolar NMR to study disordered materials,
is the experimental spectrum effectively comprises all local structure variations felt by
the type of nucleus under study. The challenge in the analysis is thus to find an
inverse mapping of experimental data in terms of structural information, which will
in most cases be non-linear. By starting from the notion that structural variations
translate into a distribution of the efg, a more accessible step is to find the form of this
distribution.

Czjzek et al [42] investigated the efg distribution in the case of structural disorder
by computer simulations. Tensor components of the efg at the center of randomly
repositioned charges, become normally distributed in the limit towards infinite sam-
plings. The resulting probability distribution, as a function of efg tensor components,
is therefore a multivariate Gaussian. This distribution can be rewritten as a proba-
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bility density function of quadrupolar interaction parameters Cq and η, which has the
closed-form

f(Cq, η) =
C d−1

q η√
2πσ d

(

1− η2

9

)

exp







− C
2
q

2σ2

(

1 +
η2

3

)







. (4.5)

Here σ is the standard deviation of the multivariate Gaussian probability distribu-
tion of the efg tensor components and d is introduced to correspond to the number
of independent tensor components [38]. Normalisation of the distribution integral to
one, provides the probability of finding a given set of Cq and η. Later the Czjzek
model was revisited and extended by Le Caër and Brand [43, 44]. They introduced an
ordered (not distributed) contribution to the efg, for example originating from a fixed
well-defined first coordination sphere. In the EGdeconv program we implemented the
most general form of the resulting probability density function, given by

f(Cq, η) ∝ C d−1
q
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(4.6)

Here Cq,o and ηo are quadrupolar parameters for the local order contribution. The
elements aij contain the angular dependence of the efg tensor components, as defined
in [43] and the EGdeconv manual. Integration over all angles leaves a distribution as
function of quadrupolar interaction parameters that encompasses short-range order
and long-range disorder.

Order parameter models

In this section we briefly introduce the idea of an order parameter model by treating
one specific example. For a more elaborate description we refer to the manual.

In structural investigations of materials, an order parameter is generally introduced
to have a measure for the presence of long-range order. This measure is related to the
fractional occupation of lattice sites by their preferred atom. While EGdeconv has the
versatility to couple various parameters and thus allows the implementation of various
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order parameter models, we have explicitly implemented Copper-Gold and Copper-
Platinum ordering in AxB1−xC systems as encountered in III-V semiconductors. We
immediately introduce the form of the equations for Copper-Gold ordering, meaning a
limit to order of alternating <001> planes of A and B atom species

pC[B4] = (1− rA)2rB
2

pC[AB3] = 2rA(1− rA)rB
2 + 2(1− rB)(1− rA)2rB

pC[A2B2] = rA
2rB

2 + (1− rB)2(1− rA)2

+ 4rA(1− rB)rB(1− rA)

pC[A3B] = 2rA
2(1− rB)rB + 2rA(1− rB)2(1− rA)

pC[A4] = (1− rB)2rA
2 .

(4.7)

The left hand side corresponds to the probability of occurrence for the specific
tetrahedral site. The variable rA is the fractional occupation number of A atoms
present in the correct plane according to the pre-determined order; therefore 1− rA is
the fraction of not-A atoms present in the same plane. The first equality for pC[B4] gives
the probability of finding a C atom coordinated by four B atoms. With respect to the
Copper-Gold ordered structure this corresponds to two B atoms present in a ‘correct’
and two in an ‘incorrect’ plane. By defining rA = x + ½S and rB = 1 − x + ½S we
introduce the order parameter S. Changing S from zero to a maximum of 2x converts
disorder to the maximally achievable Copper-Gold ordering.

4.3 Evolutionary algorithms

Evolutionary Algorithms (EA’s) are based upon the Darwinian theory of a natural
selection process occurring by reproduction and mutation of genes in a chromosome
leading to only best adapted individuals. In our case, direct translation of these con-
cepts is achieved by accepting vectors with fit parameters as chromosomes and the dis-
crepancy between experimental and theoretical spectrum as selection criterion. EA’s
propagate/optimise typically a population of initially, randomly chosen trial solutions
in their vector representation. This population-based character, inherently provides
more information on search space structure, partly accounts for their global optimisa-
tion capabilities. Ultimately it is the algorithm’s mechanism to exploit this search space
information that accounts for optimisation performance. EGdeconv currently provides
the use of three different evolutionary algorithms: a genetic [47], derandomised 2 evo-
lution strategies (DR2-ES) [48] and covariance matrix adaptation evolution strategies
(CMA-ES) algorithm [16].
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The genetic algorithm includes recombination via parameter vector cross-over’s
and applies point mutations to a small part of the population. Evolution strategies
algorithms only use overall mutations, the stepsize and direction are determined by
strategy parameters. For the DR2-ES algorithm, the mutative steps are determined on
inherited strategy parameters from successful parent vectors. The CMA-ES algorithm
in addition incorporates parameter covariance information to generate trial solutions.
For more in-depth information on the algorithms, we refer to the manual and references
given in this section.

4.4 EASY-GOING deconvolution program structure

Here we provide the reader with a brief overview of the program flow, for a more ela-
borate treatment we refer to the manual at http://egdeconv.science.ru.nl. After
starting the EGdeconv program from the Linux command line, the input file is parsed
and the libraries are read into the computer memory. Obviously the amount of com-
puter memory provides a limit to the grid size and resolution of the library, however,
EGdeconv provides several ways to avoid this limit, for example: by ensuring a library
is only present once in the memory, or by allowing to choose the [η,Cq] grid taken
from the library or number of data points read per file. Subsequently the selected EA
generates parameter vectors that are translated into theoretical spectra. These trial
spectra are rated by comparing the experiment to the theory by evaluation of a cost
function. There are multiple cost functions defined in EGdeconv, for example the use
of a weighted innerproduct between the theoretical and experimental spectrum vectors.
The EA effectively performs the above in an iterative fashion to reach convergence.

A theoretical spectrum is the sum of subspectra of which each corresponds to a
parameter set in the input file and hence a specific chemical site. The program flow to
calculate a subspectrum is illustrated in Fig. 4.1.

The figure illustrates in what order the selected library files are processed, and where
the various fitting parameters are used. First step is summation of the files according to
the distribution model chosen. Then depending on the type of data, time or frequency
domain, the result requires additional processing in the form of apodisation and a
Fourier transform. Subsequently the intensity of the subspectrum is determined either
freely or according to an order parameter model. It is possible to apply a zeroth and first
order phase correction to the subspectrum or to use the absolute or absolute squared
value of the spectrum. The program flow is ended by positioning the subspectrum.
Note that the number of fit parameters per subspectrum can vary between one and
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apply distribution:

-no distr.

-Czjzek distr.

-ext. Czjzek distr.

Frequency domain: Time domain:

-apodisation

-Fourier Transform

Relative intensities Order parameter

Phasing Absolute (squared)

Spectral shift

Imported library

print distribution

print time signal

print imaginary part

Figure 4.1: Program flow of EGdeconv for the calculation of a subspectrum. The grey-white
blocks indicate the choices the user has in its synthesis. For each step, parameters that can
be included in the fit are indicated. The definition of part of the parameters (d, σ, η(o),
Cq,(o), x and S) can be found in the Theory section. The exponential/Gaussian apodisation
(νexp/νgsn) and zeroth and first order phasing (ϕ0, ϕ1) are defined in the manual, leaving
only the trivial parameters chemical shift (νs) and intensity (I).

effectively ten at maximum. Whether or not EGdeconv will converge depends on a
number of factors, for example: the parameter correlations, unique features in the
experimental spectrum and of course the accuracy of the simulated library files.

Fig. 4.1 also illustrates that EGdeconv can print extra output. This feature pro-
vides the user with more insight in what happens during the different stages in the
calculation. The amount of output is governed by appropriately setting keywords in
the input file.

4.5 Examples

In this section three applications of the EGdeconv program are presented. They repre-
sent the program’s versatility, by the use of second-party software, in this work SIMP-
SON [32], to handle different experimental conditions, for example: static or magic
angle spinning (MAS), free induction decay or Hahn echo acquisition etc. Additio-
nally, we show lineshape analysis with or without (extended) Czjzek distributions.
Input files for these examples are provided with the installation package.
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4.5.1 27Al MAS NMR spectrum of Yttrium Aluminium Garnet

Fig. 4.2 shows a hard pulse 27Al MAS NMR spectrum of YAG (Y3Al5O12) at 15 kHz
MAS. YAG has a garnet type structure with Al occurring in a tetrahedral and an
octahedral coordination in 3:2 ratio. The spectrum of powdered YAG was measured
and fully characterised by Massiot et al. in 1990 [49]. Combination of MAS conditions
and the well-defined quadrupolar interactions, indicated by the sharp lineshapes, make
this a suitable benchmark study for EGdeconv. Massiot et al. established interaction
constants for the tetrahedrally (∼6MHz, η=0) and octahedrally (∼0.6MHz, η=0) co-
ordinated sites with a relative abundance (∼3:2). Given the results mentioned in the
caption of Fig. 4.2, EGdeconv efficiently reaffirmed these findings.

10 5 0 −5 −10 −15 −20
ν

27Al
 [kHz]

Figure 4.2: Experimental (dotted line) and theoretical (continuous line) 27Al spectrum of
YAG together with the negative absolute value of the difference. The spectrum consists
of a broad resonance of the tetrahedral site in addition to two spinning side bands and
the central transition of the octahedral site. Five independent fits with [η(start:step:end)-
Cq(start:step:end)] grids [0.00:0.01:0.10-5.0:0.1:7.0] and [0.00:0.01:0.10-0.3:0.1:1.0] obtained
Cq values of 6.1 and 0.6 MHz and η values of 0.04 and 0.07±0.02, respectively, only standard
deviations larger than the library stepsize are noted. The relative intensity of the respective
sites, was determined 1 : (0.69±0.01).

4.5.2 Oxidation of Sodium Aluminium Hydride (NaAlH4)

Fig. 4.3 shows the results of fitting 27Al MAS spectra of NaAlH4’s oxidation process as
a function of time. All information provided here is based on [50] that contains referen-
ces and more details about the data analysis. The NaAlH4 sites in the material have
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a well defined lattice without significant variations. When exposed to air, structurally
disordered tetrahedrally and octahedrally coordinated oxide sites will form. From Mul-
tiple Quantum MAS experiments it was determined that the quadrupolar interaction
of the tetrahedral (Al(IV)) site is distributed. Therefore the lineshape of this site was
fitted with a Czjzek distribution that reproduces the asymmetric lineshape, as shown
in Fig. 4.3. The octahedral site (Al(VI)) contained in addition to a distribution in
quadrupolar parameters also line broadening from dipole-dipole couplings, this influ-
ence was mimicked by additional line broadening. As the NaAlH4 has a well-defined
crystal structure this line was described without a distribution in quadrupole parame-
ters. Additional Gaussian line broadening accounted for the dipolar broadening as the
spectra were obtained without proton decoupling.

2 4 6 8
0

5
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time (weeks)

ν
27
Al

 [kHz]

NaAlH
4

Al(IV)

Al(VI)

Figure 4.3: Oxidation of NaAlH4 as a function of time. Experimental (dotted line) and
theoretical spectra (continuous line) are overlayed and shown as a function of time. The
dashed lines roughly connecting the peaks are qualitative guides to the eye. They emphasize
the conversion of NaAlH4 in tetrahedral Al(IV) and octahedral Al(VI) oxide sites. For the
fits a [η(start:step:end)-Cq(start:step:end)] grid of [0.00:0.05:1.00-0.5:0.5:15.0] was used.

The aim of the spectral deconvolution here was to quantify the relative intensities
of the various lines as a function of time. This allows to monitor the interconversion of
the different components during oxidation as shown in Fig. 4.3, and discussed in detail
in [50].
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4.5.3 Static Hahn echo spectrum of Aluminium Gallium Arsenide

Fig. 4.4 shows a 75As Hahn echo spectrum of powdered Al0.489Ga0.511As, one form of
the widely used and well-characterised AlGaAs semi-conductor. Solid-state NMR was
used to investigate the possible order or disorder in the occupation of the Al/Ga sites.
The analysis of this spectrum is published in [38] and was the main driving force behind
the development of EGdeconv.

−0.8−0.6−0.4−0.200.20.40.60.8

    ν
75As

 [MHz]

[Ga
4
] [Al

4
]

[AlGa
3
] [Al

3
Ga][Al

2
Ga

2
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Figure 4.4: Experimental (thick dotted line) and theoretical (thick continuous line) Hahn
echo spectrum of Al0.489Ga0.511As, deconvoluted in terms of subspectra corresponding to
tetrahedral aluminium-gallium sites. The [Al4] and [Ga4] sites were fitted with a Czjzek
distribution, the remaining sites required an extended Czjzek distribution to account for the
ordered efg contribution in the first coordination sphere. Subspectrum intensities were fitted
with respect to one subspectrum, but independently. Three libraries with [η(start:step:end)-
Cq(start:step:end)] grids of [0.00:0.05:1.00-0.0:0.2:3.2] ([Al4] and [Ga4]), [0.00:0.01:0.10-
31.0:0.1:35.0] ([Al3Ga] and [AlGa3]) and [0.85:0.01:1.00-28.0:0.1:35.0] ([Al2Ga2]) were used.

With a spectral width of 2.5 MHz and sites with small and large quadrupolar cou-
pling constants present, this example is particularly dependent on accurately simulated
excitation efficiencies. As the figure shows, the spectrum can be decomposed in terms
of tetrahedral aluminium-gallium coordinations of the arsenic atoms. The centered
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narrow lines correspond to the [Al4] and [Ga4] coordinations of the arsenic atoms,
these sites have such a high symmetry that the efg due to the first atomic coordination
shell is zero, leading to a small quadrupolar interaction strength caused by disorder
in the higher coordination spheres. With respect to excitation efficiencies it should
be noted that for these sites both central and satellite transitions are of importance.
Due to a negligible efg contribution of the first atom coordination shell, these sites are
specific probes of disorder in higher order coordination spheres. This justifies the use
of a Czjzek distribution to calculate the lineshapes.

The symmetry of the remaining three sites causes a large efg contribution from the
first coordination shell. The excitation efficiency of these sites is mainly selective to
the central 〈½,-½ 〉 transition. To fit these sites an extended Czjzek distribution was
applied, for which the σ parameter was set to the average of the [Al4] and [Ga4] Czjzek
distribution, since the latter are probes for long range disorder. The last step in the
analysis is the use of an order parameter to relate the site intensities. The resulting fit,
shown in [38] and available in the installation package, matches less than that of Fig.4.4,
but provides a value of S close to zero, indicating the expected structural disorder. An
in-depth study of this disorder supported by DFT calculations reproducing the fitted
distributions is described in [38].

4.6 Conclusions and outlook

We presented EASY-GOING deconvolution, a program for fast and accurate fitting of
one-dimensional solid-state quadrupolar NMR spectra of powdered materials. The use
of second-party software to calculate libraries as a function of quadrupolar parameters
allows accurate simulation of the experiment and a low computational cost for theoreti-
cal spectrum synthesis during the fitting. This furthermore allows a straightforward ex-
tension of the program to fit other NMR interactions, such as chemical shift anisotropy
and combinations thereof. The program is provided for 64-bit Linux operating systems
and supports efficient parallel computing due to the nature of the incorporated evo-
lutionary algorithms that can handle many-parameter fits. The program includes the
(extended) Czjzek distribution and order parameter model to indicate and quantify
structural (dis)order in materials. With three examples we showed EGdeconv’s versa-
tility to manage different experiment types and quadrupolar parameter distributions.
In the future the program will be extended to include the fitting of single crystal data
and 2D spectra.
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4.7 Experimental

4.7.1 Experimental data

The 27Al spectrum of Fig. 4.2 was measured on a 14.1 T Chemagnetics Infinity NMR
spectrometer, using a 2.5 mm double resonance probe. The experiment consisted of
a single 0.2µs hard pulse at 214 kHz rf field strength, while magic angle spinning the
sample at a frequency of 15 kHz.

Experimental parameters for the spectra in Fig. 4.3 were a hard pulse excitation of
0.2µs and 160 kHz effective rf field strength at 15 kHz MAS at 9.1 T external field. The
Hahn echo experiments on AlGaAs in Fig. 4.4 were performed at 18.8 T external field
with an effective rf field of 625 kHz. The first delay was set to 175µs and acquisition
started 5µs after the π pulse. For more information on the latter two experiments we
refer to [50] and [38], respectively.

4.7.2 How to use EASY-GOING deconvolution

This section covers the practical aspects of EGdeconv. Introduction of input for EGde-
conv adheres the convention that <. . .> input is required and [. . .] is optional. The
words, units and abbreviations replacing the . . . help to interpret the meaning of the
variable as to what should be filled in. Please note that for the full description of all
topics in this section we refer to the manual at http://egdeconv.science.ru.nl.

Installation requirements

The EGdeconv program requires a 64-bit Linux operating system. The installation
package includes the EGdeconv and OpenMPI binaries. OpenMPI is responsible for
the parallel computing. The program has been tested on various Linux distributions:
Fedora 9, 10 and 11, Ubuntu 10.04 (LTS) and openSUSE 11.3. Installation will proceed
via a shell script as depicted on our website.

Experimental data

EGdeconv requires the one-dimensional experimental spectrum in a two-column ASCII
file with the number of complex spectrum points a power of two. The first column
should be the spectral frequency and the second, the real or absolute value (squared)
of the spectrum.
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Libraries

Before attempting to fit the experimental data, the user should calculate a library
of time or frequency domain data as a function of η and Cq for the appropriate ex-
perimental conditions. This can be done with any preferred simulation program, for
example SIMPSON [32] and SPINEVOLUTION [23], as long as the libraries adhere to
the format given in this section. The filename format should be

<sitename>–<Cq(MHz)>–<η>.<arb. file extension>

for example AlO4–30.25–0.01.fid. The currently supported internal file format is that
of SIMPSON. The first five lines contain, in plain text, the keywords: SIMP, NP=
<#points>, SW=<MHz>, TYPE=<FID/SPE> and DATA. This information is used
by EGdeconv. The rest of the file consists of the real and imaginary parts of the
calculated data in the first and second column, respectively, finalised by the keyword
END. EGdeconv allows to regulate the size of the actual (Cq,η)-grid used for the fitting
procedure, via the keyword ’speciesX’ as will be discussed below. Note that spectrum
files should have the same number of points as the experiment, for the time domain
data this is irrelevant. Examples of libraries are included in the installation package.

Input file

The EGdeconv installation package contains a number of example input files. Input
files for the EGdeconv binary consist basically of plain text containing lines with either:
comments (starting with #), keywords

<keyword string> = <value(s)> / <string>

or parameter settings.

parameter = <n> <name> <start> [[lower] [upper]] [[coupling] [nset/num]]

There are numerous keywords, all tabulated in the manual, enabling the choice of:
EA, extra output, special weighting or removal of parts of the spectrum, etc. a few
examples are

#relative path

experimental spectrum = expdata/spec.dat

#absolute path to library

species1 = /home/user/depart_libr/Al27

#single calc with start parameters

testcalculation = 1
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Parameter lines contain, according to the format given above, parameter: reference
number, (arbitrary) name, fixed value for single spectrum calculation or during fitting
in absence of boundaries, upper and lower boundaries for fitting and type of inter/intra
parameter set couplings. A few examples

#fix value during fit

parameter = 1 d 1

#fit between 3 and 5 MHz

parameter = 2 sigma 4 3 5

#value equal to par 3 set 1

parameter = 3 qcc0 30 E 1

It is important to place parameter lines in order of increasing reference number; the
number indicates the parameter’s identity for EGdeconv. The EGdeconv parser will
consider the subsequent encounter of a lower reference number as the start of a new
parameter set. Parameter sets correspond to individual sites and their (sub)spectrum.

One keyword named ‘speciesX’ requires special attention. This is the link between
the inputfile and the calculated libraries. Creative usage of this keyword can save both
computation time and memory. The keyword with all options present is given by

species<X> = <path> [[ηb] [ηe] [ηs] [Cq,b] [Cq,e] [Cq,s]]

For a different library the value of X, starting from one, should increase by one. The
subscripts: b(egin), e(nd), and s(tep), indicate the precise grid in η and Cq(MHz) to
use from the library located at <path>. If no grid is specified, EGdeconv will load the
entire library, unless the keyword is not linked to a parameter set.

In addition to the keyword ‘speciesX’ there is also an equally named parameter,
currently reference number 199. The start value of this parameter relates directly to
X and the corresponding library. This system allows multiple parameter sets to use
the same library while it is present only once in the computer memory.

A second special parameter, currently number 198, regulates the quadrupolar pa-
rameter distribution model used to calculate the (sub)spectrum for the parameter set.
The name of the parameter should be either: no distr, czj distr or ext czj distr which
are self explanatory. The choice of distribution model assigns the meaning of parame-
ter reference numbers one to four to respectively (η, Cq), (d, σ) and (d, σ, Cq,o, ηo).
More information on the available parameters and their couplings is available in the
EGdeconv manual. Working examples are also supplied with the installation package.

52



Section 4.7: Experimental

Program output

EGdeconv facilitates various outputs during, and at the end of the fitting procedure or
calculation using only parameter start values for a test spectrum. During the fitting,
a file is written and updated to summarise the current best fit parameters and the
cost function value. At the end of the procedure a new file is created that contains the
columns: frequency, best fit spectrum, experimental data and subspectra. Additionally
a final file is made that summarises the results of the fit. We refer to the manual for a
complete description of the (optional) output.
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CHAPTER 5

EASY-GOING deconvolution: automated MQMAS NMR

spectrum analysis based on a model with analytical crystallite

excitation efficiencies

The EASY-GOING deconvolution (EGdeconv) program is extended to enable fast
and automated fitting of multiple quantum magic angle spinning (MQMAS) spectra
guided by evolutionary algorithms. We implemented an analytical crystallite exci-
tation model for spectrum simulation. Currently these efficiencies are limited to
two-pulse and z-filtered 3QMAS spectra of spin 3/2 and 5/2 nuclei, whereas for higher
spin-quantum numbers ideal excitation is assumed. The analytical expressions are
explained in full to avoid ambiguity and facilitate others to use them. The EGde-

conv program can fit interaction parameter distributions. It currently includes a
Gaussian distribution for the chemical shift and an (extended) Czjzek distribution for
the quadrupolar interaction. We provide three case studies to illustrate EGdeconv ’s
capabilities for fitting MQMAS spectra. The EGdeconv program is available as is on
our website http://egdeconv.science.ru.nl for 64-bit Linux operating systems.

J. Magn. Reson. 228 (2013) 116-124
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5.1 Introduction

Multi-dimensional NMR of quadrupolar nuclei is a powerful spectroscopic tool to pro-
vide spectral insight into nucleus-environment interactions at the molecular level [39].
A good example and immediate focus of this paper is the routinely used MQMAS
experiment for half-integer quadrupolar nuclei [36, 51]. This technique aids in distin-
guishing the contribution of the anisotropic part of the quadrupolar interaction from
the isotropic chemical shift and quadrupolar induced shift in the F2 and F1 spectral
dimensions. In practice this is especially useful for the analysis of one-dimensional
spectra that have (strongly) overlapping lines.

Furthermore, NMR is a robust method for studying disordered materials, e.g.,
glasses and semiconductors, since it probes the local atomic environment of NMR
active nuclei. This disorder is reflected in the MQMAS line shapes, and can be trans-
lated into interaction parameter distributions. In the last ten years there has been
an increasing interest to quantify this disorder [52, 43, 44]. A model developed by
Czjzek et al. [42] and extended by Le Caër et al. [43, 44] is promising for describing the
quadrupolar interaction parameter distribution resulting from this structural disorder.
These models basically translate the distribution in electric field gradients, caused im-
plicitly by variations in bond lengths and angles or disorder in the higher coordination
spheres [38], to a distribution in interaction parameters.

In the NMR community the analysis of MQMAS spectra is currently facilitated by
two programs; DMfit [39] for fitting with a simplified model, assuming ideal crystallite
excitation, and SIMPSON [32] for accurate simulation incorporating all interactions.
Regarding spectrum fitting, the computational cost for a single spectrum of the SIMP-
SON program is high. The main cause is the costly numerical integration of the
Liouville-Von Neumann equation. The DMfit program is less broadly applicable, due
to the assumption of ideal excitation of all crystallites, but allows spectrum fitting
including a Czjzek distribution [52]. Another approach would be to use the GAMMA
framework [53] that provides a versatile set of functionalities to simulate NMR experi-
ments. It will require the user to program the NMR experiment and then connect it to
a fitting routine. The presence of a Python interface (PyGAMMA) should make this
procedure relatively easy.

This work aims to aid the quantitative analysis of MQMAS spectra [54] by the in-
troduction of a fast fit-model that includes analytical crystallite excitation efficiencies.
An approach that can be considered to partially fill the gap between SIMPSON and
DMfit. The excitation efficiency model is available for 3QMAS spectra of spin 3/2 (7Li,
23Na, 39,41K, 75As, 87Rb,. . .) and 5/2 nuclei (17O, 25Mg, 27Al, 85Rb,. . .). For higher spin
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quantum numbers an ideal excitation model is provided. Expressions were derived for
a two-pulse and z-filtered MQMAS experiment in the infinitely fast MAS limit, thereby
excluding simulation of spinning side bands. This approach enables a sub-second cal-
culation of an MQMAS line shape, including a Gaussian chemical shift distribution, on
a regular desktop computer, whereas a single-core SIMPSON simulation exceeds one
hour. Accounting for a distribution in quadrupolar parameters and multiple chemical
sites is consequently relatively inexpensive. Furthermore, we provide parallel compu-
tation support and robust convergence of the fit by offering a choice between three
evolutionary algorithms [55, 41] to guide the fitting. A combination of MQMAS and
one-dimensional NMR data can form a self-consistent data set for quantitative analysis,
both supported by EGdeconv as is shown in the examples below.

The extension of EGdeconv [55] for MQMAS spectrum fitting has most functio-
nalities of the one-dimensional fitting program, but excludes most importantly the
library approach, thereby removing the second-party software dependence. In the re-
mainder of this paper we will discuss the theory, the program structure and three
case studies. Please note that this paper is not intended as a user manual for the
program. A separate and up-to-date manual [56] is provided at our website http:

//egdeconv.science.ru.nl, where we also provide the input files for the examples.

5.2 Theory

The theory that follows is worked out specifically for spin 3/2 and 5/2 quadrupolar nu-
clei subjected to a two-pulse [36] or a z-filtered [51] 3QMAS scheme. Both experiments
are illustrated in Fig. 5.1. The figures show how both experiments start with a ra-
dio frequency (rf) block-pulse to excite triple-quantum-coherence. Subsequently an
incremented delay follows that forms the indirect dimension, after which a conversion
pulse-scheme is used to obtain a detectable single quantum coherence to form the direct
dimension. Finally the whole pulse scheme is phase cycled to exclusively obtain the
required coherence pathway, all under MAS conditions.

Our aim is to present the analytical expressions in full for others to use without
ambiguity. The manual [56] contains the expressions as they are actually implemented.
We assume a static sample during the pulses and infinitely-fast MAS during the free
evolution of the coherences. The implications of ignoring the time dependence of the
crystallite orientations has been addressed in numerous papers [54, 57, 58, 59, 60, 61,
62]. It most of all concerns not simulating the redistribution of the spectral intensity
in the spinning side bands in both dimensions. In our case studies we show how we can
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still obtain accurate and reliable interaction parameters and relative site abundances
for these type of spectra. In the discussion section we will elaborate more on the range
of validity of the model.

t2t1

(a) two-pulse 3QMAS

t1 t2

(b) z-filtered 3QMAS

Figure 5.1: Triple quantum magic angle spinning pulse sequences. The pulse sequences
with their indirect t1 and direct t2 dimension are shown in black. Coherence pathways are
shown in grey. (a) The two pulses of length τ1 and τ2 provide the triple-quantum-coherence
excitation and conversion, respectively. (b) In the z-filtered 3QMAS experiment, the triple-
quantum-coherence is excited and subsequently converted to zero-quantum-coherence. A
third low-amplitude rf-pulse of width τ3 provides a selective excitation of the detectable
single-quantum-coherence.

In our approach, the MQMAS spectrum is described directly in the frequency do-
main. The contribution of every crystallite orientation to the spectrum is constructed
by determining its frequency coordinate and the efficiency of the excitation before
adding it to the powder average. We will refer to the model without excitation effi-
ciency as the ideal excitation model.
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5.2.1 Crystallite spectral position

The spectrum of a crystallite in the infinitely-fast MAS case, is a single peak positioned
at a two-dimensional frequency coordinate with components of the form [29]

ν−m→m = 2mνiso + CI,m
0 νqis + CI,m

4 ν4(α, β) . (5.1)

In the case of a 3QMAS experiment, the magnetic quantum numbers are m= 1/2,
3/2 for the direct and indirect dimension, respectively. I is the total nuclear angular
momentum quantum number and the coefficients of the isotropic and anisotropic term
of the quadrupolar interaction frequency are given by

CI,m
0 = 2m

(

I(I + 1)− 3m2
)

(5.2)

CI,m
4 = 2m

(

18I(I + 1)− 34m2 − 5
)

· P4

(

cos(ΘM)
)

. (5.3)

The fourth order Legendre polynomial term P4(cos(ΘM)), equal to −7/18 with ΘM the
magic angle, is a MAS averaged scaling factor. Furthermore νiso, νqis and ν4(α, β) in
Eq. 5.1 are the isotropic chemical and quadrupolar induced shift and the anisotropic
frequency contribution of the quadrupolar interaction. The latter two depend on the
quadrupolar interaction parameters η (asymmetry) and Cq (quadrupolar coupling con-
stant), two parameters we described in our previous EGdeconv paper [55], which are
connected to Eq. 5.1 via

νqis = − C2
q (3 + η)

40ν0I2(2I − 1)2
(5.4)

and

ν4(α, β) =
9C2

q

448ν0I2(2I − 1)2
·






7

18

[

3− η cos(2α)
]2

sin4(β)

+ 2
[

η cos(2α)− 2− η2

9

]

sin2(β) +
2

45
η2 +

4

5







.

(5.5)

Here ν0 = −γB0/2π is the Larmor frequency of the quadrupolar nucleus, and α and β
the Euler angles that connect the principal axes frame of the quadrupolar interaction
to the MAS rotor frame, see 5.7.4.

5.2.2 Crystallite excitation efficiency

We now proceed with the derivation of the crystallite excitation efficiencies. The ap-
proach consists of solving the time dependent Liouville-Von Neumann equation for the
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density operator involving both the multiple-quantum-coherence excitation pulse and
the coherence-conversion pulse scheme. In addition to the assumptions of infinitely-fast
MAS during free coherence-evolution and a static sample during pulsing, we neglect
any rf-field offset [59, 60]. An assumption that relies on the relatively strong quadru-
polar interaction compared to practical rf-offsets, as will be addressed in the discussion
section.

The relevant part of the density operator at thermal equilibrium in the rotating
frame of the Zeeman interaction at time τ0, is given by ρ̂(τ0) = Îz and transforms after
a block-pulse of length τ1, see Fig. 5.1, according to

ρ̂(τ1) = exp
{

−iĤτ1

}

ρ̂(τ0) exp
{

iĤτ1

}

. (5.6)

Ĥ is the Hamiltonian operator, in units of angular frequency, during an rf block-pulse.
The Hamiltonian includes the rf-field and the first order quadrupolar interaction

Ĥ = −ω1Îx +
ΩQ(θ, ϕ)

6
[3Î2

z − Î2] , (5.7)

with 2ω1 = −γBrf and the quadrupolar frequency

ΩQ(θ, ϕ) =
ωQ

2

[

3 cos2(θ)− 1 + η sin2(θ) cos(2ϕ)
]

. (5.8)

Here ωQ = 6πCq/[2I(2I − 1)] and ϕ and θ are the Euler angles that connect the
principal axes frame of the quadrupolar interaction to the laboratory frame, see 5.7.4.

We now express the density operator in a basis of eigen functions |I,m〉 of the
Zeeman Hamiltonian, and calculate matrix element indices according to

ρI+m′+1, I+m+1 ≡ 〈I,m′| ρ̂ |I,m〉 . (5.9)

To obtain the triple-quantum-coherence excited by the first pulse, we need to determine
the triple-quantum-coherence matrix element at time τ1. This requires the analytical
diagonalisation of the Hamiltonian matrix given by Eq. 5.7 expressed in the appropriate
Zeeman basis. Eq. 5.6 in the basis of eigen functions of the Hamiltonian directly returns
the density matrix at time τ1. After transformation back to the |I,m〉 basis we obtain
the triple-quantum-coherence term after the excitation pulse. Using Mathematica [63]
we obtained for a spin 3/2 nucleus
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ρ41(τ1) = −ρ14(τ1) =

3i cos(ω1τ1)

ω2
+ − ω2

−
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ΩQω− + ω1ω+

}

sin(ω+τ1)

−
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+
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+ − Ω2
Q

}

cos(ω+τ1)

+
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− − ω2

+ + Ω2
Q

}

cos(ω−τ1)





(5.10)

that clearly shows the involved sum and difference frequencies

2ω± =
√

Ω2
Q − 2ΩQω1 + 4ω2

1 ±
√

Ω2
Q + 2ΩQω1 + 4ω2

1 . (5.11)

as well as the conventional pulse flip-angle ω1τ1.
We also obtained expressions for spin I = 5/2 where the Mathematica-based Hamilto-

nian diagonalisation of Man [64] was used. The symmetrical triple-quantum-coherence
elements are

ρ52(τ1) = −ρ25(τ1) =
i

2

3
∑

m=1

3
∑

n=1

kmn

Qm+Qn−

sin
(

(ωm+ − ωn−) τ1

)

. (5.12)

The definitions of the variables are

Qm± =

[

1 +
5ω2

1

4(10
3

ΩQ − ωm±)2
+

2ω2
1

(8
3
ΩQ ± 3

2
ω1 + ωm±)2

]

(5.13)

and

kmn =

[

3 +
25ω1

4(10
3

ΩQ − ωm+)(10
3

ΩQ − ωn−)

+
2ω1

(8
3
ΩQ ± 3

2
ω1 + ωm+)(8

3
ΩQ ± 3

2
ω1 + ωn−)

]

.

(5.14)
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The eigenvalues of the Hamiltonian matrix are

ω1± = ∓ω1

2
+ 2

√

s±
3

cos(
φ±
3

)

ω2± = ∓ω1

2
− 2

√

s±
3

cos(
π

3
− φ±

3
)

ω3± = ∓ω1

2
− 2

√

s±
3

cos(
π

3
+
φ±
3

) ,

(5.15)

with

cos(φ±) =
ΩQ

18s±

√

3

s±
(160Ω2

Q ∓ 36ΩQω1 − 144ω2
1) (5.16)

and

s± =
84

9
Ω2

Q ± 4ΩQω1 + 4ω2
1 . (5.17)

In the case of two-pulse 3QMAS data we are interested in the single-quantum-coherence
created by the second pulse shown in Fig. 5.1(a). By applying the approach for the
first pulse to ρ̂(τ1) we obtained for spin I = 3/2

ρ23(τ1 + τ2) =
3ω2

1

2(ω2
+ − ω2

−)

[

ρ14(τ1)− ρ41(τ1)
]

× cos(ω1τ2) sin(
1

2
(ω+ + ω−) τ2) sin(

1

2
(ω+ − ω−) τ2) .

(5.18)

The same procedure was applied for spin I = 5/2 resulting in the following expression

ρ34(τ1 + τ2) = ω2
1

[

ρ25(τ1)− ρ52(τ1)
]

×
3
∑

m=1

3
∑

n=1

cos
(

(ωm+ − ωn−) τ2

)

(

Qm+Qn−

)−1

(8
3
ΩQ + 3

2
ω1 + ωm+)(8

3
ΩQ − 3

2
ω1 + ωn−)

.

(5.19)

In the case of z-filtered 3QMAS experiments, see Fig. 5.1(b), we consider the efficiency
directly proportional to the population difference of the central-transition states. For
a spin I = 3/2 this is

ρ22(τ1+τ2)− ρ33(τ1+τ2) = −2i tan(ω1τ2)ρ23(τ1+τ2) . (5.20)

This assumes ideal conversion of the zero-quantum coherence to single-quantum co-
herence during the selective third pulse of length τ3 in the experiment, feasible by
choosing the appropriate rf-field [65, 66]. For spin I = 5/2 the expression for ρ33(τ1 +
τ2) − ρ44(τ1 + τ2) is equal to the right hand side of Eq. 5.19 multiplied by -2i and the
cosine function replaced with a sine [56].
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5.2.3 Ideal crystallite excitation

In this work we define ideal crystallite excitation as that the spectral line shape is
determined directly by the number of crystallite orientations that are mapped to each
two-dimensional frequency coordinate with components given by Eq. 5.1. In other
words, the excitation efficiency has a negligible angular dependence. In general this
situation is created by using short pulses, so no differentiation in coherence-evolution
of the crystallites during the pulse takes place. Additionally there should be sufficient
field strength to fully cover the spectral width of the line shape, and a negligible rf-offset
dependence.

5.3 The program

As noted above, the model for MQMAS spectrum simulation is build into the EGde-
conv program [55], a framework that provides parallelised evolutionary algorithms to
guide the data fitting. Therefore we will only describe the MQMAS simulation model
here, and refer to the previous paper [55] and the accompanying manual [56] for further
information on the parameters and keywords used in the input file of the EGdeconv
program.

We now proceed with the description of the synthesis of a subspectrum. A sub-
spectrum corresponds to a chemical site and the sum of subspectra is the simulated
spectrum that is used to fit the experimental data. Fig. 5.2 shows the different steps
of the calculation. All variables presented in the figure are directly controlled via a
parameter set in the EGdeconv input file. The heart of the simulation in Fig. 5.2 is the
crystallite spectrum. It is created by combining the frequency coordinate components
given by Eq. 5.1 and the corresponding, but optional, excitation efficiency Eq.’s 5.18,
5.19 or 5.20. The program allows to apply a shearing transformation [29] as a function
of λ according to

νsheared
−m→m = ν−m→m − λ ν−1/2→1/2 . (5.21)

A crystallite spectrum is generated per Cq, η pair and subsequently summed over
all orientations in a powder average. Currently only the ZCW (Zaremba, Conroy,
Wolfsberg) averaging scheme [67] is implemented. Two-angle sets are used, with an
equidistant integration over the third angle described in appendix 5.7.4 and [56]. The
quadrupolar interaction parameters may be distributed, currently supported by the (ex-
tended) Czjzek distribution, which involves a weighted sum over the generated powder
spectra.
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Figure 5.2: The scheme used by EGdeconv to compute a subspectrum corresponding to
a chemical site. If the quadrupolar interaction parameters have a distribution, crystallite
spectra are summed per Cq, η pair to form a powder spectrum and subsequently summed
according to a distribution over Cq, η pairs. Furthermore, the subspectrum receives a relative
intensity, line broadening and a convolution with a Gaussian distribution for the chemical
shift. Parameters that are indicated in the figure are available in each parameter set in the
input file.

After all summations are done, the subspectrum is multiplied with an overall inten-
sity factor that corresponds to the relative abundance of a chemical site in the material.
Additionally the two-dimensional line shape can be broadened with a Gaussian and/or
exponential apodisation to, e.g. , match the data processing or include the dephasing
effects of dipolar couplings. The final step is the convolution of the spectrum with an
optional (Gaussian) chemical shift distribution. This distribution has a mean δiso and
a width σs [56].
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5.4 Examples

In this section we present the results of several case studies each of which represents a
different part of the program’s capabilities. We start by benchmarking EGdeconv by fit-
ting several 27Al 3QMAS spectra, nuclear spin 5/2, of aluminium alkoxides. Quadrupo-
lar interaction parameters of the alkoxides were determined by fitting one-dimensional
data [68] . Their 3QMAS data was used to determine the isotropic chemical shifts. In
this case study we show how we obtain all these parameter values directly from the
3QMAS spectra and how spinning side bands are handled.

Subsequently we present the fit of 87Rb 3QMAS data, nuclear spin 3/2, of rubidium-
nitrate measured under experimental conditions that lead to non-ideal excitation,
thereby putting our fitting model with analytical excitation efficiencies to the test.
In addition to reproducing the interaction parameters of [69], we prove that we can
reproduce the line shape and relative site intensities where the ideal excitation model
does not.

To conclude we show the analysis of the 3QMAS spectrum of an yttrium-sialon
glass. This spectrum reflects a distribution in both quadrupolar interaction parame-
ters and chemical shift, that we try to model with respectively a Czjzek and Gaussian
distribution and the analytical excitation efficiencies. We show how we can fit the
line shapes of three sites simultaneously to obtain their interaction distribution pa-
rameters. The interaction parameters can subsequently be used to deconvolute the
one-dimensional spectrum, and obtain the relative site abundances.

All fits include the excitation efficiencies, unless stated otherwise, and were per-
formed with the Covariance matrix adaptation evolution strategies (CMA-ES) algo-
rithm [16]. The EGdeconv input files of all MQMAS examples are available on our
website http://egdeconv.science.ru.nl.

5.4.1 Aluminium Alkoxides

In Fig. 5.3 the 27Al sheared 3QMAS data fits of three different alkoxides coordinated
to aluminium are presented. All spectra were measured and analysed in ref. [68] on the
basis of one-dimensional and 3QMAS data. Table 5.1 summarises our resulting para-
meter values from the 3QMAS fit, alongside their values from the previous study [68].
In all spectra the sum-projections in both direct and indirect dimensions of the two-
dimensional experimental and simulated data are shown. A least-squares fit [56] be-
tween these projections was used as a measure of fit-quality for the CMA-ES algorithm.
The obvious benefit of the sum-projections is that the intensity of the spinning side
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bands is added to that of the central transition in the δ2 dimension, which can be more
readily simulated. The δ1 dimension sum-projection provides in these spectra an extra
feature to determine the isotropic position of the central transition during the fitting.

δiso [ppm] Cq [MHz] η

ethoxide 35.5 35 .5 9.58 9 .65 0.37 0 .39
butoxide 48.5 48 .5 13.03 13 .14 0.64 0 .61
isoprop. (IV) 60.0 61 .5 12.20 12 .37 0.14 0 .14
(VI) 0.8 2 .5 0.6 1 .9 0.0 0 .0

Table 5.1: Fitted interaction parameters for the alkoxide spectra in Fig. 5.3, values from [68]
are in italics. In the fit of isopropoxide, η of the octahedral site was fixed at 0.

The spectrum of aluminium ethoxide, Fig. 5.3(a), that corresponds to a five-coordi-
nated aluminium, shows a good match between the sum-projections in the (δ2) di-
mension. The main difference at high δ2 values in the figure is caused by an Al2O3

impurity. For the case of aluminium butoxide, Fig. 5.3(b), with a tetrahedral alu-
minium surroundings the fitted spectrum also closely resembles the sum-projection of
the experimental data. The line shape at δ1≈ 250 ppm is an aliased spinning side band.
Table 5.1 shows that we obtained interaction parameters that agree with the findings
of [68] on the basis of MQMAS and one-dimensional data for both spectra.

The spectrum of aluminium isopropoxide in Fig. 5.3(c) reveals tetrahedral (IV) and
octahedral (VI) sites that posed the opportunity to determine relative site abundances.
From the fit of these relative intensities we obtained the ratio (IV):(VI)=1:2.7 which
was determined 1:3 by [68] on the basis of one-dimensional data. It should be noted
that there is a negligible difference between the fitted relative intensities, whether the
analytical excitation efficiencies are accounted for or not. This means that with the
current pulse widths both sites are excited with similar efficiency. The difference for
Cq of the octahedral site (VI) is due to a lack of quadrupolar features in the sharp line.
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(a) aluminium ethoxide (b) aluminium butoxide

(IV)

(VI)

(c) aluminium isopropoxide

Figure 5.3: 27Al z-filtered 3QMAS spectra (ω1/2π=310 kHz, τ1=1.3 µs, τ2=0.45 µs, and
τ3=4 µs with ω1/2π=21 kHz), experiment (grey) and fit (black), for three aluminium alko-
xides [68]. The spectra are normalised based on their integrals, and their sum-projections
are scaled with their integrals to be visible on the intensity scale of the spectrum. In the
isopropoxide spectrum we zoomed in on the tetrahedral (IV) site, this is the reason for the
cut of the octahedral (VI) site peak. Data was sheared after the fit.
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5.4.2 Rubidium-nitrate

Rubidium-nitrate (RbNO3), as the guinea pig for MQMAS experiments, has three
well-defined sites with: equal abundance, similar quadrupolar coupling constants, but
different asymmetry parameters as given in the most to the right column in table 5.2.

To further test the analytical excitation efficiency model and distinguish it from
the ideal excitation model, two 87Rb 3QMAS spectra of RbNO3 were measured. One
spectrum was obtained using relatively short pulses and strong rf-field strength and
represents the ideal excitation case (Fig. 5.4(a)), as discussed in section 5.2.3. The sec-
ond spectrum was obtained with complementary settings to evoke non-ideal excitation
(Fig. 5.4(b) and 5.4(c)). By measuring the spectrum at a magnetic field of 300 MHz
proton frequency we also encountered overlapping lines as an additional challenge for
the fitting.

A fit of the ideal excitation spectrum using either model results in Fig. 5.4(a).
The least squares difference between the two-dimensional experimental and simulated
spectra was used [56] as the quality measure for the CMA-ES algorithm. Table 5.2
shows that the fitted parameter values are nearly equal to those from literature [70].
This is confirmation that the assumption of ideal excitation is valid in this case.

Fitting the second spectrum resulted in a different fit for each model as shown in
Figs 5.4(b) and 5.4(c). Incorporation of the (analytical) excitation efficiencies provides
a better description of especially line shapes I and II. This is reflected in a difference
in η parameter for both fits as shown in table 5.2. Particularly line shape II is different
from that in Fig. 5.4(a). The intensity of the left peak appears to move into the right
shoulder of the line.

(Fig. 5.4(a)) (Fig. 5.4(b)) (Fig. 5.4(c))
site pars ideal eff. off eff. on [70]

I Cq[MHz] 1.75 1.77 1.74 1.77
η 0.54 0.60 0.55 0.54

II Cq[MHz] 1.72 1.75 1.73 1.72
η 0.19 0.27 0.16 0.19
I 0.97 0.90 1.06 1.00
integral 1.14 0.93 0.93 –

III Cq[MHz] 1.99 1.99 1.99 2.01
η 0.89 0.93 0.91 0.90
I 1.00 0.85 0.99 1.00
integral 0.93 0.87 0.87 –

Table 5.2: Fitted parameter values of the 87Rb 3QMAS spectra of rubidium-nitrate in Fig. 5.4. I,
as indicated in Fig. 5.2, stands for relative intensity, in this case with respect to site I. For comparison
the parameter values obtained by [70] at 29.3◦C are given in the most to the right column.
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I

II

III

(a) excitation efficiency model fit to ideal excitation data

I

II

III

(b) ideal excitation model fit to non-ideal excitation data

I

II

III

(c) excitation efficiency model fit to non-ideal excitation data

Figure 5.4: Simulations (black) of the z-filtered 87Rb 3QMAS spectrum of rubidium-nitrate (grey).
Integrals of the spectra are set equal, contour lines are drawn at the same intensities. (a) ideal
excitation spectrum (ω1/2π=211 kHz, τ1=2.6 µs, τ2=0.9 µs) fitted with excitation efficiency model.
(b) and (c) the non-ideal excitation spectrum (ω1/2π=108 kHz, τ1=5.2 µs, τ2=2.6 µs) fitted with and
without analytical excitation efficiencies.

With respect to the prediction of relative site abundances, it follows from table 5.2
that the excitation model fit comes closest to the actual ratio. Especially if we compare
the sum of the intensities (due to the overlap of the line shapes), we obtain the ratios
1:2.05 and 1:1.75. The ideal excitation model appears to follow the trend of the line
shape integrals, which leads to an underestimation of the intensities of lines II and III.
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5.4.3 Yttrium-sialon glass

Sialon glasses doped with rare-earth metals are interesting for photo-electric applica-
tions. Glasses are disordered systems which makes quantification in terms of interaction
constants tedious. The benefit of having MQMAS data is that it aids in effectively sep-
arating chemical shift and quadrupolar interaction contributions to the spectrum, that
would otherwise not be visible in the one-dimensional data.

In practice this means that, after shearing, a distribution in chemical shift will
become visible as a broadened line in the F1 dimension. For a distribution in quad-
rupolar interaction parameters, the line shape is influenced in both dimensions by the
(isotropic) quadrupolar induced shift. However, only the F2 dimension is influenced
by the anisotropic part of the interaction. The two-dimensional spectrum thereby pro-
vides enough features to distinguish and fit interaction parameter distributions, and
potentially relative site abundances as discussed in the rubidium-nitrate case study.

Fig. 5.5(a) shows the fitted 27Al 3QMAS spectrum of an yttrium-sialon glass [71]
(named after the atomic constituents: silicium, aluminium, oxygen and nitrogen), using
the inner product cost function [56] between the two-dimensional spectra as the quality
measure. In both dimensions of the spectrum we see broadened lines which indicates
that both chemical shift and quadrupolar interactions are distributed. In the two-
dimensional plane, the lines are separated which is useful to avoid ambiguity in the fit.
Note that the one-pulse spectrum of the sialon material in Fig. 5.5(b) does not provide
these insights.

The three distinct lines of the chemical sites in the spectrum are probably broad-
ened due to structural variations in bond angles and lengths deviating from: tetrahe-
dral, trigonal bipyramidal and octahedral coordinations in the material [72]. Fig. 5.5(a)
shows how a combination of the Czjzek distribution for the quadrupolar interaction

δiso σs σ 2D 2D 1D
coordination [ppm] [ppm] [MHz] integral I I

tetrahedral 62.6 17.0 4.03 1.00 1.00 1.00
trigon. bip. 27.7 13.6 4.04 0.21 0.20 0.30
octahedral -2.4 11.4 3.65 0.03 0.04 0.05

Table 5.3: The parameter values from the fit of the yttrium-sialon glass (Fig. 5.5). Parame-
ters δiso, σs are the mean and width of the Gaussian chemical shift distribution, σ the width
of the Czjzek distribution (power factor d=5), 2D integrals of the lines in Fig. 5.5(a), I the
relative intensities of Figs 5.5(a) and 5.5(b).
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parameters and a Gaussian distribution for the chemical shift can approximate the line
shapes in the spectrum. Only at the basis of the largest peak a mismatch is visible
between the more triangular basis of the experimental data and the more rounded si-
mulated spectrum. Table 5.3 presents the fitted parameter values. It should be noted
that a fit with either ideal or excitation efficiency model did not change the results. To-
gether with the fact that the intensities match with the line integrals, we may conclude
ideal excitation of the material.

0
50

100

0

50

100 δ
1
(ppm)

δ
2
(ppm)

(a) yttrium-sialon glass 3QMAS

−20020406080100
δ (ppm)

(b) yttrium-sialon glass one-pulse spec-
trum

Figure 5.5: Experimental data is in shown in grey, simulated results are in black. (a) Fitted
27Al 3QMAS spectrum of an yttrium-sialon glass with skyline projections. Three chemically
distinct sites are shown that correspond to variations in, from bottom to top: tetrahedral,
trigonal bipyramidal and octahedral surroundings. A Czjzek and Gaussian distribution is
used for the quadrupolar interaction and chemical shift, respectively. Fitted parameter values
are given in table 5.3. (b) Fit of the one-pulse spectrum. Czjzek distribution parameter values
from the 3QMAS fit are used (table 5.3). The subspectra that constitute the simulated
spectrum are plotted below the base line.

The fitted interaction parameters of the 3QMAS were used to fit the one-pulse
spectrum of the yttrium-sialon glass. This led to a good and stable fit as shown in
Fig. 5.5(b). Note that the asymmetric line shape of the subspectra is caused by the
Czjzek distribution. Table 5.3 shows the fitted relative intensities of the lines. There is
a significant difference for the MQMAS and 1D fit with respect to the tetrahedral and
trigonal bipyramidal site intensity ratios. This difference we explain by the different
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effective T1 > 2s of the two sites in combination with the cycle delay of 4 seconds
that was used to limit the time needed for the 3QMAS experiment. The one-pulse
data should be quantitative since only a short pulse, and therefore a small flip-angle,
is used.

5.5 Discussion

A large part of this paper is focussed on the analytical excitation efficiencies to extend
the accuracy of fast MQMAS spectrum simulation. Here we would like to elaborate
on the limits of the validity of the theory by using physical arguments and tests we
performed.

One of the first assumptions is that the spin system can be treated as static during
the pulsing. An important argument in favour of this, is the order of magnitude
difference between the pulse widths of several µs (equivalent to hundreds of kHz) and
the MAS speeds of several tens of kHz. In addition to the argument of a small γ angle
rotation (5.7.4) of the MAS rotor, typically of the order of 10 degrees, the positions
of the crystallites along the direction of rotation are interchanged. This leads to a
further indistinction for the crystallite excitation efficiency. If the pulse becomes too
long or the MAS speed too high, the excitation efficiency will be influenced, and our
model will no longer be valid. Pulse lengths can be shortened by increasing the rf-field
strength [29]. Whether or not the use of our model is valid should be assessed per
experiment. For the case study of the sialon glass, at 37 kHz MAS, the line shapes
could be reproduced accurately.

For testing purposes we used SIMPSON as well as our own numerical integration
routine to solve the Liouville-Von Neumann equation including the full quadrupolar
interaction Hamiltonian, rf-field and sample rotation for a single crystallite. Although
we did not thoroughly study all of the parameter dependencies, for typical pulse widths
and interaction parameters, related to the examples, our perturbative method did not
significantly deviate from the exact solution. SIMPSON additionally accounts for MAS
and second order quadrupolar coupling. The results started to deviate for MAS speeds
above 30 kHz and pulse widths larger than 10 µs. This shows our model is realistic for
a wide range of experimental settings.

Secondly we assume an ideal zero to single quantum conversion pulse in a z-filtered
3QMAS experiment. Which should be acceptable with a properly chosen rf-field for
the z-filter pulse [65, 66]. We experimentally verified the correctness of the assumption
by comparing two-pulse data with z-filtered data at different rf-field strengths for the
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rubidium-nitrate. Additionally our testing program showed that the explicit incorpo-
ration of the third pulse does not alter the results for typical experimental settings.

Thirdly we disregard rf-offset, which is acceptable considering that the tilt angle of
the nutation does not deviate much for line widths of several kHz and rf-field strengths
of hundred kHz or more. If necessary, it is possible to implement analytical excitation
efficiencies including rf-offset [59, 60].

The assumption that proves the most difficult to handle is the infinitely-fast spin-
ning limit. Spinning side bands are often visible in the spectrum, so this immediately
proves this assumption is incorrect. In order to still obtain reliable results it is impor-
tant to have all spinning side bands present in the spectrum, so all spectral intensity
can be regained in the sum-projections. These projections can then used for the fitness
function as was discussed in the alkoxides example. A practical solution may be to
perform rotor synchronised detection experiments [73], in order for all side bands to
fold back on top of the central peak.

To conclude, in addition to obtaining the correct line shape and thereby the quad-
rupolar interaction parameters, it is also feasible to obtain the relative abundance of
the sites directly from the MQMAS data, as was shown in the rubidium-nitrate ex-
ample. In the yttrium-sialon case study, however, we encountered a problem due to
the requirement of a relatively long cycle delay in the experiment due to the different
effective T1’s of the sites. In such cases it is easier to obtain the interaction parameter
information from the MQMAS data and use these to fit a one-pulse spectrum to obtain
quantitative relative intensities.

5.6 Conclusions

We have shown the capabilities of the EGdeconv program to fit, guided by evolutio-
nary algorithms, MQMAS spectra using an analytical crystallite excitation efficiency
model. We presented the theory for the model in full detail to avoid ambiguity and to
facilitate others to use it. In three case studies we showed how to obtain quantitative
information from fitting 3QMAS spectra with: spinning side bands, multiple sites, in-
teraction parameter distributions and non-ideal excitation. The ideal excitation model
encompasses all quadrupolar nuclei and multiple-quantum-coherence excitation, while
excitation efficiencies are available for I = 3/2, 5/2 nuclei and two-pulse and z-filtered
3QMAS.
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5.7 Experimental

5.7.1 1D sialon fit

For the fit of the 1D spectrum of the yttrium-sialon glass with the EGdeconv program,
a library size of 609 files, simulated with SIMPSON, was used with Cq ranging from 1
to 15 MHz in steps of 0.5 MHz and η from 0 to 1 in steps of 0.05.

5.7.2 Yttrium-sialon

The single-pulse and MQMAS experiments were performed on an 850 MHz Varian
spectrometer at a MAS frequency of 37 kHz, with AlCl3(aqua) as reference compound
for 27Al at 221 MHz.

A pulse length of 1.4 µs and a rf-field strength of 20 kHz was used in the single-pulse
experiment. The z-filtered 3QMAS experiment was performed with an rf-field strength
of 150 kHz for the excitation and conversion pulses with a pulse length of 2.4 and 0.8
µs respectively. The z-filter pulse was 5 µs long at an rf-field of 20 kHz.

Both single-pulse and MQMAS spectrum were corrected for aluminium background
of the rotor. The rotor signal was measured with the same experimental settings and
subsequently subtracted from the spectra.

5.7.3 Rubidium-nitrate

The 87Rb z-filtered 3QMAS spectrum was measured on a 300 MHz Varian spectro-
meter at 12.5 kHz MAS. The non-ideal excitation data was obtained using an rf-field
strength of 105 kHz for the excitation and conversion pulses with lengths 5.2 and 1.8
µs, respectively. For the ideal excitation data the rf-field settings were: 211 kHz field
strength and pulse widths of 2.6 and 0.9 µs. The z-filter pulse had a strength of 10 kHz
and width of 11µs. A reference of RbCl(aqua) was used for 87Rb at 96 MHz.

5.7.4 Frame interconversion

Eq.’s 5.1 and 5.7 for the position and intensity of a single crystal spectrum are defined
with respect to the MAS and laboratory reference frame, respectively. Figure 5.6 illus-
trates how the Euler angles relate the principal axes frame (x,y,z) of the quadrupolar
interaction tensor to a reference frame, either the MAS frame (Z along the MAS axis)
with α, β, γ or laboratory frame (Z along the magnetic field) where we use ϕ, θ, ψ in
this work.
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Figure 5.6: Definition of the Euler angles (α, β, γ) that relate the interaction’s principal
axes frame (x,y,z) to the reference frame (X,Y,Z). Note that the vector N is normal to the
plane of the z and Z axes.

It is the infinitely-fast MAS assumption and cylindrical symmetry of the magnetic
field that render Eq. 5.1 and 5.7 invariant to the γ and ψ angle. However, if we want to
relate a frequency coordinate to an excitation efficiency, the angles need to be related
to each other. We worked out the following relations

cos(θ) = − sin(ΘM) sin(β) cos(γ) + cos(ΘM) cos(β)

cos(ϕ) = sin(ΘM) [cos(α) cos(β) cos(γ)− sin(α) sin(γ)]

+ cos(ΘM) cos(α) sin(β) ,

(5.22)

from which we can construct all terms in Eq. 5.8 using goniometric identities.
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CHAPTER 6

Pressure broadening in the impact approximation

In the second part of this thesis we move to molecular spectroscopy. Where the
interaction between nuclear spin and electromagnetic radiation is the key in NMR
experiments, the field of molecular spectroscopy uses the interaction of radiation with
other molecular degrees of freedom: rotation, vibration, and electronic structure. The
focus of the current and the following chapter is the theoretical description of the
influence of collisions on the absorption of radiation by molecular oxygen. What is
so special about the approach discussed here, is that the theory is parameter free.
Experimentally observable quantities are predicted by a theoretical model that is
based on fundamental constants and the laws of physics.

6.1 Absorption of radiation by a molecular gas

The transmitted intensity of electromagnetic radiation that travelled a path length l
through a cell filled with gas is described by the Lambert-Beer law. For radiation of
angular frequency ω and intensity I0(ω), the relation is given by

Itr(ω) = I0(ω) exp{−lnσ(ω)} . (6.1)

Here is n the number of particles per volume (number density), and σ(ω) the absorp-
tion cross section (in unit length squared). This cross section is determined by the
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properties of the gas and may originate from several mechanisms. The latter will be
discussed in the next chapter for the case of molecular oxygen. For an infinitesimally
small path length l and a molecule with a magnetic transition dipole moment, the
absorbed radiation intensity becomes directly proportional to the integrated line cross
section [74, 75]

If←i =
∫ ∞

−∞
σ(ω)dω =

2πωif

(4πε0)3~c4
|〈f |µ̂|i〉|2 , (6.2)

in unit length per molecule. The constants ε0, c, and ~ are respectively: the vacuum
permittivity, the speed of light, and Planck’s reduced constant. The matrix element
〈f |µ̂|i〉 is that of the magnetic transition dipole moment operator, which is responsible
for absorption of radiation of frequency ωi,f , and the transition from initial state |i〉 to
final state |f〉 of the molecule.

6.2 Change in absorption by elastic particle collisions

This section discusses the change in radiation absorption by elastic collisions of a
molecule with a magnetic transition dipole moment. Hence, the state of the light-
absorbing molecule can only change its relative phase by the collisions. To specialise
this discussion even further towards the case of molecular oxygen in the next chapter,
an electronic magnetic dipole transition is considered. The particles that collide with
the absorber are structureless, i.e., they have no internal degrees of freedom that can
change due to collisions or absorption of light.

To reduce the complexity of the theory and to show the fundamental aspects of the
pressure broadening theory, additional restrictions are used. Part of these restrictions
will be lifted in section 6.4. The restrictions are:

1. The motion of the absorber is not taken into account, e.g., no Doppler effect.
2. Perturbing particles do not interact with each other.
3. Interaction potentials between absorber and perturber are scalar additive.
4. The Born-Oppenheimer approximation [76] is used for the particle-absorber in-

teraction potentials, which leads to a separate potential for each electronic state
of the absorber.

With these restriction, the wavefunction describing the absorber-perturber system
can be written as a product

|x〉 = ψ(a)
x (r)

N
∏

m=1

ψ+
x,km

(rm) . (6.3)
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Here x = i, f represent the initial and final electronic transition state of the molecule.
The absorber states ψ(a)

x (r) are eigenfunctions of the Schrödinger equation containing
the molecular Hamilton operator Ĥ(a) according to

Ĥ(a)ψ(a)
x (r) = E(a)

x ψ(a)
x (r) , (6.4)

with x = i, f , and E(a)
x the state energies. The coordinate r represents all internal

coordinates of the molecule. The motion of the perturbers in the potential of the
absorber is treated quantum mechanically. Their translational states are the scattering
wavefunctions ψ+

x,km
(rm), which are solutions of Schrödinger equations of the form

[T̂m + V̂x]ψ+
x,km

(rm) = εx,km
ψ+

x,km
(rm) , (6.5)

with T̂m the kinetic energy operator for the m-th perturber, V̂x (x = i, f) the interaction
potential with either the initial or final (electronic) state of the absorbing molecule.
The vector rm connects the centres of mass of the two particles. The solutions of Eq.
6.5 are the scattering wave functions ψ+

x,km
(rm), normalised to the volume of the gas

cell V , with asymptotic wave vector km and energy εx,km
.

To determine the change in light absorption of the molecule due to collisions, the
whole system of the absorbing molecule and the structureless perturbers should be
considered in the |i〉 and |f〉 states of Eq. 6.2. Substitution of the product state of Eq.
6.3 into Eq. 6.2 leads to the expression for radiation absorption of the system

If←i(k
′
1, . . . ,k

′
N ,k1, . . . ,kN) =

2πωif |〈ψ(a)
f |µ̂|ψ

(a)
i 〉|2

(4πε0)3~c4

N
∏

m=1

|〈ψ+
f,k′

m
|ψ+

i,km
〉|2 , (6.6)

at frequency

ωif = ~
−1[E(a)

f − E
(a)
i + εf,k′

1
− εi,k1 + . . .+ εf,k′

N
− εi,kN

] . (6.7)

These expressions show that the absorption intensity at spectral frequency ωif depends
on a complex interference in the inproducts of the elastic scattering wavefunctions. In
the potentials of the initial and final electronic states the perturbing particles may gain
and lose translational energy, and the absorption frequency changes relative to the pure
molecular transition frequency.

6.3 Absorption line shape in the impact approximation

In the previous section the absorption intensity for a molecular system with a com-
pletely determined quantum state was given. The next step is to obtain the spectral
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line shape F (ω) that can be determined experimentally. This line shape follows from
Eq. 6.6 by averaging over initial wave vectors km with weight pkm

(the Boltzmann
factor), and integrating over final wave vectors k′m

F (ω) =
∫

dk1 . . .
∫

dkN

∫

dk′1 . . .
∫

dk′N

× pk1 . . . pkN
If←i(k1, . . . ,kN ,k

′
1, . . . ,k

′
N)δ(ω − ωif ) , (6.8)

=
2πω|〈ψ(a)

f |µ̂|ψ
(a)
i 〉|2

(4πε0)3~c4

1

2π

∫

dt eiωte−i/~(E
(a)
f
−E

(a)
i

)t[φ(t)]N . (6.9)

Here δ(ω − ωif ) is a Dirac delta function. Moving from Eq. 6.8 to Eq. 6.9 the line
shape is written as the Fourier transform of a time dependent function φ(t) raised to
the power of the number of perturbers N . This result is still exact under the restrictions
posed in the previous section, and if the interaction potentials for all N perturbers are
the same. Hence, the effect of one perturber on the absorber is used to extrapolate to
the case of N perturbers. In other words, in this theory the line shape follows from
the consideration of one binary collision. We define

φ(t) ≡
∫

dk
∫

dk′pk|〈ψ+
f,k′|ψ+

i,k〉|2e−i/~(εf,k′−εi,k)t , (6.10)

=
∫

dk pk〈ψ+
i,k|ei[T̂ +V̂f ]te−i[T̂ +V̂i]t|ψ+

i,k〉 . (6.11)

The Fourier transform of function φ(t) essentially provides the line shape that results
from one binary collision. Since the perturber is most of the time far away from the
absorber, this line shape is expected to closely resemble a delta function. Hence φ(t) is
approximately constant, with a correction that is proportional to the probability of the
collision taking place. In a gas cell of volume V , very large compared to the particle
size, a probability on the order of V −1 is expected. At this point the stage is set for an
elegant limit towards a large number of perturbers [77]

lim
N→∞

[φ(t)]N = lim
N→∞

[1− V −1g(t)]N = exp [−ng(t)] . (6.12)

Here n = N/V is the number density, number of perturbers per volume. The exact
form of g(t) is given without further derivation [77]

g(t) =
∫

dk pk

{

i〈ψ+
f,k|V̂i − V̂f |ψ+

i,k〉t

+
∫ dk′

8π3
|〈ψ+

f,k′|V̂i − V̂f |ψ+
i,k〉|2

1− exp [−i(ε− ε′)t]
(ε− ε′)(ε− ε′ − iη)

}

. (6.13)
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Here i is the imaginary number, ε, and ε′ are the corresponding energies of states |ψ+
i,k〉

and |ψ+
f,k′〉. Each of the two terms in g(t) represents a different part of the collision

dynamics. The first term only describes completed collisions. This is visible due to
the fact that the k vectors for both scattering states are the same. Hence there is no
uncertainty in the energy balance before and after collision, this is related to long time
dynamics via the uncertainty principle. The second term in g(t) contains an oscillatory
integral over k′ vectors. In contrast to the first term, this term represents the more
short time dynamics. It poses a formidable challenge to compute, and to our knowledge
this type of calculations have only been performed by atomic physicists [78, 79, 80, 81].

The impact approximation states that it takes many weak collisions to obtain an
appreciable change to the absorber’s wavefunction, or that strong collisions are well
separated in time [82]. This behaviour is captured by the first term in g(t) in Eq. 6.13.
The matrix element in this term can be worked out exactly in terms of scattering am-
plitudes that are obtained from solving the Lippmann-Schwinger equation [83]. These
elements represent what part of the free particle state |k〉 is scattered by the potential.
The function g(t) without the second term becomes [77]

g(t) ≈
∫

dk pk

{

i[〈k|V̂i|ψ+
i,k〉 − 〈ψ+

f,k|V̂f |k〉

+ 2πi
∫

dk′〈ψ+
f,k|V̂f |k′〉δ(εf,k′ − εi,k′)〈k′|V̂i|ψ+

i,k〉] t
}

, (6.14)

≡ i〈vσ〉t (6.15)

The Dirac delta function δ(εf,k′−εi,k′) ensures the total energy before and after collision
remains the same, also called on-the-energy-shell scattering. The off-the-energy-shell
matrix elements are required for the second term in Eq. 6.13. Additionally, a notation
is defined for the average over k vectors. The symbol 〈vσ〉 stands for the thermal
average over collision energies of the collisional cross section σ. In the next chapter it
is given explicitly.

Substitution of Eq. 6.15 in Eq. 6.12 leads via the Fourier transform in Eq. 6.9 to
the collisional line shape

F (ω) =
2πω

(4πε0)3~c4

1

π
Im

[ |〈ψ(a)
f |µ̂|ψ

(a)
i 〉|2

ω − ωif − in〈vσ〉

]

, (6.16)

=
2πω

(4πε0)3~c4

1

π

|〈ψ(a)
f |µ̂|ψ

(a)
i 〉|2 [n〈vσ〉Re]

[ω − ωif + n〈vσ〉Im]2 + [n〈vσ〉Re]2
. (6.17)

It is a Lorentzian line shape with the width and shift determined by the real and
imaginary part of the rate 〈vσ〉 defined in Eq. 6.15. Given that the long time behaviour
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of function g(t) in Eq. 6.13 is correctly described in the impact approximation, this
line shape is valid close to the line centre. In what frequency range it is valid exactly,
is different per molecular system [84, 85, 86].

6.4 Multiple transitions and inelastic collisions

The treatment of a single absorption line may be extended to incorporate multiple lines
and inelastic collisions [82]. This is still possible within the impact approximation. One
important difference with respect to the treatment discussed in the previous sections,
is that the wavefunction that describes the whole system may not immediately be
written as the product of Eq. 6.3. This product was partly the result of only allowing
elastic collisions and perturber-absorber potentials that are scalar additive. Based on
this wavefunction the collisional line broadening could be described directly in terms
of binary collisions in section 6.3.

With the inclusion of inelastic collisions and possibly perturber-absorber potentials
that do not add in a scalar fashion, the product wavefunction of Eq. 6.3 is only true if
the collisions are disentangled [82]. Fortunately, this is exactly what happens naturally
in the impact approximation that states that there should be a long time between
strong collisions. The line shape is thus still described in terms of binary collisions [82].

A more convenient mathematical representation for the pressure broadening theory
is obtained with standard angular momentum theory [87]. The equations may be re-
duced by imposing that the absorbing molecule is surrounded by an isotropic gas [88].
What remains is an expression in terms of standard scattering matrix elements simi-
lar to Eq. 6.13 that can be found by solving the coupled-channels equations [89, 90].
The resulting expression for a multi-line spectrum with rotational transitions between
states with quantum numbers jα and jβ is given by [91]

F (ω) =
2πω

(4πε0)3~c4

1

π
Im

[

∑

j′
α,j′

β
;jα,jβ

〈j′α||µ||j′β〉∗〈jα||µ||jβ〉ρjα

[

A−1
]

j′
α,j′

β
;jα,jβ

]

, (6.18)

Aj′
α,j′

β
;jα,jβ

= (ω − ωjα,jβ
)δjα,j′

α
δjβ ,j′

β
− in〈vσj′

α,j′
β

;jα,jβ
〉 . (6.19)

Here ρjα
is the population of state jα, and δjα,j′

α
is a Kronecker delta. The element

〈jα||µ||jβ〉 is a Wigner-Eckart reduced matrix element according to the convention [92]

〈jαmα|µ̂m|jβmβ〉 = (−1)jα−mα

(

jα 1 jβ

−mα m mβ

)

√

2jα + 1〈jα||µ||jβ〉 , (6.20)
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with the large parentheses indicating a Wigner 3j symbol.
The main differences between Eqs. 6.17 and 6.19 are the presence of primed quantum

numbers and that 〈vσ〉 becomes a matrix, named the relaxation matrix [93]. The primes
indicate that the initial and final states of different transitions may be coupled by
inelastic collisions. Spectral lines can exchange intensity, which is called line-mixing [94,
95], and the spectrum will then deviate from a sum of Lorentzian line shapes. With
this introduction the reader should be prepared enough to read the final paper of this
thesis.
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CHAPTER 7

A theoretical and experimental study of pressure broadening of

the oxygen A-band by helium

The rotationally resolved spectrum of the oxygen A-band b1Σ+
g (v=0)←X3Σ−g (v=0)

perturbed by collisions with helium was studied theoretically using the impact approxi-
mation. To calculate the relaxation matrix, scattering calculations were performed on
a newly computed helium-oxygen (b1Σ+

g ) interaction potential as well as on a helium-
oxygen (X3Σ−g ) interaction potential from the literature. The calculated integrated
line cross sections and broadening coefficients are in good agreement with experi-
mental results from the literature. Additionally, cavity ring-down experiments were
performed in the wings of the spectral lines for a quantitative study of line-mixing,
i.e., the redistribution of rotational line intensities by helium-oxygen collisions. It
is shown that inclusion of line-mixing in the theory is required to reproduce the ex-
perimentally determined absolute absorption strengths as a function of the helium
density.

(in preparation)

7.1 Introduction

The near-infrared (≈760 nm) A-band extinction of molecular oxygen is of increasing
atmospheric importance. It is used extensively for the calibration of satellite instru-
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ments that help to determine atmospheric temperature and pressure [96, 97]. The
extinction of light by atmospheric oxygen in the A-band region is understood to come
from: Rayleigh scattering, collision induced and magnetic dipole absorption [98]. Much
effort has been invested to quantify the contribution of these mechanisms experimen-
tally [99, 100, 101]. This includes mixtures of oxygen with other collision partners, such
as nitrogen and noble gases.

Rayleigh scattering is the elastic scattering of light on subwavelength particles.
Collision induced absorption (CIA) involves absorption of light by a transient electric
dipole moment, induced by a collision with a perturber [102, 103, 104]. These mecha-
nisms add broad features to the extinction in the A-band region as will be shown below.
The strongest and sharpest features in the A-band are the P and R branch of the for-
bidden magnetic dipole transitions (electronic spin angular momentum change ∆S = 1
and molecular symmetry change Σ− ↔ Σ+). The electric dipole transitions are doubly
forbidden as well (∆S = 1 and g ↔ g), but it is spin-orbit coupling that makes only
the magnetic dipole absorption allowed [105]. Regarding electric quadrupole transi-
tions, that spectrum would have an O and S branch with the same order of magnitude
as the P and R branch [105]. Only the P and R branch are observed.

To our knowledge, there is no first principles prediction of an electronic magnetic
dipole absorption spectrum of molecular oxygen influenced by collisions with a foreign
gas present in the literature. In a broader perspective, there is no fully quantum
mechanical treatment available in the literature that treats an electronic transition of
a molecule perturbed by collisions. The reason may very well be the requirement for an
accurate interaction potential of the perturbing particle with the electronically excited
state of the absorbing molecule.

These considerations motivated our choice to start with a relatively simple system
of molecular oxygen perturbed by helium atoms. This first of all reduces the quite
extensive scattering calculations required to obtain the spectral line shapes in the
impact approximation. Secondly, we have access to a cavity ring-down setup to measure
the absolute absorption intensities for this system as a function of pressure. The cavity
ring-down technique is capable of measuring minute absorptions due to the long path
length created for the radiation by the highly reflective mirrors that are used. We used
this characteristic to quantitatively study the shape of the lines relatively far from
the line centre. These regions provide information about the deviation of the spectrum
from a sum of Lorentzian line shapes commonly named line-mixing [94, 95]. The impact
approximation theory should describe line-mixing correctly if the participating spectral
lines are not spaced too far apart.

In the following sections of this paper, we start with a review of the theory of
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the rotationally resolved spectroscopy of the oxygen A-band. The expression for the
absorption spectrum in the impact approximation will be given. Followed by the de-
scription of the calculation of the interaction potential for the helium atom with the
oxygen b state, and the performed scattering calculations. Then the cavity ring-down
experiments will be described, including the processing of the data to remove the
contribution of Rayleigh scattering and CIA. Finally, the results are presented and dis-
cussed. Firstly, the quantities that are relatively insensitive to the effects of line-mixing
are given and compared to their experimental values taken from the literature. These
are the integrated line cross sections and pressure broadening coefficients. Line-mixing
is neglected in the calculation of these quantities. Subsequently, the line-mixing mecha-
nism is put to the test by studying pressure-dependent absolute absorption strengths
in the valleys between spectral lines. Calculated results that either include or neg-
lect line-mixing are compared to the cavity ring-down data. These results show the
importance of including line-mixing to describe the absorption spectrum correctly.

7.2 Theory

7.2.1 Rotational structure of the X3Σ−g and b1Σ+
g states of O2

The electronic ground state of molecular oxygen is an open shell state with term symbol
X3Σ−g . In this work the rotronic structure of this state is required, and the vibrational
part of the wavefunction is considered later. The relatively weak coupling between
nuclear rotation and electronic spin (Tab. 7.1), warrants the expansion of the ground
state fine structure states |FiJMJ ; 3Σ−g 〉 (laboratory frame) in a Hund’s case b basis

|FiJMJ ; 3Σ−g 〉 =
J+1
∑

N=J−1

aFi

N

∑

MN ,MS

√

2N + 1

4π
DN,∗

MN ,Λ=0(α, β, 0)

× |3Σ−g , S=1,MS〉〈NMNSMS|JMJ〉 .
(7.1)

The two-angle normalised Wigner D-functions
√

(2N + 1)/4πDN,∗
MN ,Λ=0(α, β, 0), nuclear

rotation eigenfunctions, are coupled to the electronic spin by the Clebsch-Gordan co-
efficient 〈NMNSMS|JMJ〉, and mixed by the expansion coefficients aFi

N . Here α and
β are azimuthal and altitudinal angles, respectively. Quantum number Λ = 0 is the
projection of the orbital angular momentum of the |3Σ−g , S=1,MS〉 electronic state on
the molecular axis.

The fine structure label Fi has three possible values: F1, F2, or F3. According to
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the convention used in [106] the expansion coefficients aFi

N in Eq. 7.1 are of the form

aF1
N=J−1 = aF3

N=J+1 = cosφ , (7.2)

aF2
N=J = 1 , (7.3)

aF1
N=J+1 = − aF3

N=J−1 = sinφ , (7.4)

and they follow from diagonalisation of the molecular Hamiltonian [107]. Eq. 7.2 shows
that the F1 and F3 functions are respectively constructed only from N = J − 1 and
N = J + 1 rotation states. The mixing-angle φ will decrease if states of higher N are
involved.

Note that N has only odd values. This results from the Pauli principle that states
that the total wave function given in Eq. 7.1 should not change sign under the permu-
tation operator P̂1,2 of the spin zero (bosonic) nuclei. Thus the product of the nuclear
and electronic state parity should be positive. The parity of the nuclear wavefunctions
is (-1)N . With respect to the electronic wavefunction, is permutation of the nuclei
equal to reflection of the electron coordinates in the body-fixed frame. This results in
an odd parity (Σ−) for the oxygen ground state electronic wavefunction.

For the b state we write

|NMN ; 1Σ+
g 〉 =

√

2N + 1

4π
DN,∗

MN ,Λ=0(α, β, 0)|1Σ+
g 〉 . (7.5)

Here N has only even values, since the parity of the electronic wave function with
respect to P̂1,2 has a different sign (Σ+).

7.2.2 Magnetic transition dipole matrix elements

The rovibronic transitions between the states |FiJMJ ; 3Σ−g 〉 and |NMN ; 1Σ+
g 〉 (both

vibrational ground states) have magnetic dipole character despite the selection rules
–=+ and ∆S= 0 [105]. The mechanism responsible for the non-zero transition prob-
ability is spin-orbit coupling [108]. Both electric dipole and quadrupole transitions are
not present in the spectrum as discussed in the introduction.

To further explain the magnetic dipole transition mechanism we first rewrite the
oxygen ground state from Eq. 7.1 in a Hund’s case a basis

|FiJMJ ; 3Σ−g 〉 =
J+1
∑

N=J−1

aFi

N

∑

Σ,Ω

√

2N + 1

4π
DJ,∗

MJ ,Ω(α, β, 0)

× |3Σ−g,Ω, S=1,Σ〉〈NΛ = 0SΣ|JΩ〉 ,
(7.6)
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for which we used

|3Σ−g , SMS〉 =
∑

Σ

|3Σ−g , SΣ〉〈3Σ−g , SΣ|3Σ−g , SMS〉 , (7.7)

=
∑

Σ

|3Σ−g , SΣ〉DS,∗
MS ,Σ(α, β, 0) , (7.8)

and the standard rule for a product of two Wigner D-functions [87]. Here Σ is the
body-fixed spin projection on the molecular axis, and Ω = Λ + Σ (Λ = 0 in this
case). The electronic orbital angular momentum part of the 3Σ−g wavefunction remains
unchanged, since the function is by definition body-fixed.

The electronic magnetic dipole operator is given by

µ̂ =
∑

i

µB

~
(l̂i + geŝi) , (7.9)

with l̂i and ŝi the orbital and spin angular momentum of electron i, µB the Bohr
magneton, ge ≈ 2.0 the electron g-factor, and ~ Planck’s reduced constant. Absorption
intensities are directly proportional to the square of the space-fixed (SF) transition
dipole moments, which in turn are related to the body-fixed (BF) dipole operator via
the transformation

µ̂SF
m =

∑

k

µ̂BF
k D1,∗

m,k(α, β, 0) . (7.10)

The combination of Eq. 7.5, 7.6 and 7.10, leads to an expression for the transition
dipole matrix elements

〈FiJMJ ; 3Σ−g |µ̂SF
m |NMN ; 1Σ+

g 〉 =
∑

MJ

(−1)J−MJ
√

2J + 1

×
(

J 1 N
−MJ m MN

)

〈FiJ ; 3Σ−g ||µ||N ; 1Σ+
g 〉 ,
(7.11)

with the reduced matrix element

〈FiJ ; 3Σ−g ||µ||N ; 1Σ+
g 〉 =

∑

N ′,Ω

aFi

N ′

√

(2N + 1)(2N ′ + 1)

(

J 1 N
−Ω Ω Ω′=0

)

×
(

J 1 N ′

−Ω Ω Λ=0

)

〈3Σ−g,Ω=Σ|µ̂BF
k=Ω|1Σ+

g 〉 .
(7.12)
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We use these reduced matrix elements to calculate integrated line cross sections [74]

IFi,J,N =
8π3ν̃Fi,J,N

(4πε0)3hc3Z
(2J + 1) exp







−hcν̃(X)
Fi,J

kBT







|〈Fi, J ; 3Σ−g ||µ||N ; 1Σ+
g 〉|2 , (7.13)

that can be compared to experimental results. Here IFi,J,N is in unit length per
molecule, ν̃Fi,J,N the wavenumber of the transition, h Planck’s constant, c the speed
of light, ε0 the vacuum permittivity constant, Z the partition sum of molecular oxy-
gen [109], hcν̃(X)

Fi,J
the energy of state |FiJ ; 3Σ−g 〉, kB the Boltzmann constant, and T the

absolute temperature.
The final step is the calculation of the body-fixed electronic 〈3Σ−g,Ω=Σ|µ̂BF

k=Ω|1Σ+
g 〉

matrix element, which is extensively treated in [108]. For completeness, we include
part of the explanations for notational consistency. Spin-orbit coupling will perturb
both electronic states in the matrix element of Eq. 7.12. Other states are mixed in
according to the selection rules of the spin-orbit operator [110], relevant to this case
are: ∆Ω = 0, ∆S = 0,±1 and g ↔ g. Together with the selection rules of the magnetic
dipole operator [105], among others ∆S = 0, g ↔ g, +↔ + and − ↔ − the states of
importance can be determined.

For the orbital momentum part of the magnetic dipole operator of Eq. 7.9, the
matrix element (including spin-orbit coupling to first order in the wavefunction) is
given by

〈3Σ−g,Ω|
∑

i

l̂±,i|1Σ+
g 〉 =

∑

n,n′

〈3Σ−g,Ω=±1|ĤSO| n,1Π+
g,Ω=±1〉

EX − EΠ(n)
〈 n,1Π+

g,Ω=±1|
∑

i

l̂±,i|1Σ+
g 〉

+ 〈3Σ−g,Ω=±1|
∑

i

l̂±,i| n′,3Π−g,Ω=0〉
〈 n′,3Π−g,Ω=0|ĤSO|1Σ+

g 〉
EΠ(n′)− Eb

.

(7.14)
Here EX and Eb are the energies of the ground and b states of oxygen, EΠ(n) and EΠ(n′)
are energies of the n(′)-th Π state of the corresponding symmetry. The explanation
for this result is as follows; if the end state of the transition dipole element is the 1Σ+

g

state, the 3Σ−g,Ω=0 ground state should obtain +, g, and S = 0 character. Consequently,

Λ should be ±1 for a non-zero matrix element of the
∑

i l̂i operator. This leads to the
1Π+

g state symmetry. Starting from the spin-orbit perturbed b state, the requirements
are: −, g, Ω = 0, Λ = ±1, S = 1. The intermediate state should have 3Π−g,Ω=0 state
symmetry.

For the spin part of the magnetic dipole operator only matrix elements with the
spin-orbit perturbed b state can lead to a non-zero result for the

∑

i ŝi operator. This
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leads to the requirements: −, g, Ω = 0, S = 1, and Λ = 0. The spin-orbit coupled
state is 3Σ−g,Ω=0. The main intensity borrowing of the magnetic dipole transition is due
to this contribution

〈3Σ−g |
∑

i

ŝ±,i|1Σ+
g 〉 = 〈3Σ−g,Ω=±1|

∑

i

ŝ±,i|3Σ−g,Ω=0〉
〈3Σ−g,Ω=0|ĤSO|1Σ+

g 〉
EX − Eb

. (7.15)

The calculation of this matrix element, including averaging over the vibrational coor-
dinate, is done in [108]. Their matrix elements are related to ours via

∓〈3Σ−g,Ω=±|
∑

i

l̂±,i + geŝ±,i|1Σ+
g 〉 = 〈X3Σ−g,y|Lx + geSx|b1Σ+

g 〉 = 0.0268µB . (7.16)

7.2.3 Spectrum in the impact approximation

The rotationally resolved A-band magnetic dipole absorption spectrum concerns transi-
tions of the type |N ; 1Σ+

g 〉 ← |Fi, J ; 3Σ−g 〉, both vibrational ground states. In the impact
approximation it is assumed that strong collisions, which change the absorber’s wave-
function significantly, are well separated in time [84]. This approximation is combined
with the assumption that the perturbing particles do not interact with each other, and
that the absorbers experience an isotropic gas surroundings. Collisional effects on the
spectrum are then described in terms of binary collisions of absorber and perturber.
The collision dynamics is captured in elastic and inelastic scattering amplitudes. The
expression for the spectrum becomes invariant with respect to the magnetic quantum
levels. This leads to the expression for the magnetic dipole absorption spectrum in
unit length squared per molecule [74, 88, 89, 91, 111]

F (ν̃) =
1

π

8π3ν̃

(4πε0)3hc3
Im







∑

F ′
i
,J ′,N ′;Fi,J,N

〈F ′i , J ′; 3Σ−g ||µ||N ′; 1Σ+
g 〉∗

[

A−1
]

F ′
i
,J ′,N ′;Fi,J,N

PFi,J〈Fi, J ; 3Σ−g ||µ||N ; 1Σ+
g 〉






.

(7.17)

Im{. . .} means the imaginary part of the expression in the brackets, see Eq. 7.13 for
further explanation of the constants. A set of quantum numbers Fi, J , N identifies a
spectral line as the initial and final state of the transition. The primed version of these
quantum numbers indicates the coupling of two spectral lines by inelastic collisions
known as line-mixing.
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The elements of the population matrix are given by

PFi,J ≡
(2J + 1)

Z
exp







−hcν̃
(X)
Fi,J

kBT







δJ,J ′δFi,F ′
i
, (7.18)

with ground state energies hcν̃
(X)
Fi,J

from diagonalisation of the molecular Hamilto-
nian [107], with spectroscopic constants given in Tab. 7.1, and δX,X′ a Kronecker delta.

The elements of matrix A in Eq. 7.17 are given by

AF ′
i
,J ′,N ′;Fi,J,N =

[

ν̃ − ν̃Fi,J,N

]

δJ,J ′δFi,F ′
i
δN,N ′ − in

2πc

〈

vσF ′
i
,J ′,N ′;Fi,J,N

〉

, (7.19)

with i the imaginary number, n the number density (particles per unit volume) of the
perturbers, c the speed of light, ν̃Fi,J,N transition wavenumbers, and 〈vσF ′

i
,J ′,N ′;Fi,J,N〉

the relaxation matrix elements (unit volume per second), including a thermal average
over collision energies Ec according to

〈

vσ...

〉

=

(

8kBT

µπ

)1/2 (
1

kBT

)2 ∞∫

0

Ec[σ
+
...(Ec) + σ−...(Ec)] exp

{

− Ec

kBT

}

dEc , (7.20)

with . . . = F ′i , J
′, N ′;Fi, J,N , and the cross sections given by

σ±F ′
i
,J ′,N ′;Fi,J,N(Ec) =

π

2µEc

∑

J
(b)
tot ,J

(X)
tot ,l′

±
,l

±

(−1)J−J ′

√

2J ′ + 1

2J + 1

× (2J (b)
tot + 1)(2J (X)

tot + 1)

{

J 1 N

J
(b)
tot l± J

(X)
tot

}{

J ′ 1 N ′

J
(b)
tot l′± J

(X)
tot

}

×
[

δFi,F ′
i
δJ,J ′δN,N ′δl

±
,l′

±
− SJ

(b)
tot ,∗

N ′,l′
±

;N,l
±

(Ec)S
J

(X)
tot

F ′
i
,J ′,l′

±
;Fi,J,l

±

(Ec)

]

.

(7.21)

Here µ is the reduced mass of the perturber-absorber complex, l+ and l− are even and
odd partial wave quantum numbers, and J (X)

tot and J (b)
tot are the total angular momentum

quantum numbers of the collisional complexes with the two relevant electronic states of
oxygen. The scattering matrix elements S...

...(Ec) contain the dynamics information of
the binary collisions and are the product of solving the coupled-channels equations [107].
S matrix elements for both potentials should be calculated at exactly the same collision
energy Ec, with respect to the initial and final states of the magnetic dipole transition.
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Note that the incoming l and outgoing l′ partial waves are the same for both oxygen
states, this is a consequence of the assumption that the absorbing molecule is in an
isotropic gas [88, 89]. Solutions of the coupled-channels equations for our problem have
a well defined parity of (−1)N+l+1 for the ground state and (−1)N+l for the b state,
which allows a separate scattering calculation for odd and even parity. Consequently,
this is also possible for Eq. 7.21. This is the reason for the distinction between even l+
and odd l− partial wave quantum numbers.

To conclude, the spectrum that follows from Eq. 7.17 becomes a complex shape if
spectral lines are coupled to each other by inelastic collisions, represented by non-zero
off-diagonal relaxation matrix elements (Eqs. 7.20 and 7.21). If, however, spectral lines
are not coupled to each other, Eq. 7.17 becomes a sum of Lorentzian line shapes

F (ν̃) =
1

π

8π3ν̃

(4πε0)3hc3

∑

Fi,J,N

|〈Fi, J ; 3Σ−g ||µ||N ; 1Σ+
g 〉|2PFi,J

(ν̃ − ν̃Fi,J,N + ndFi,J,N)2 + (nwFi,J,N)2
. (7.22)

The width wFi,J,N and shift dFi,J,N of these lines are equal to the real and imaginary
parts of 〈vσFi,J,N ;Fi,J,N〉/2πc in Eq. 7.19.

7.3 He-O2(b
1Σ+

g ) interaction potential

7.3.1 Ab initio methods

The potential was calculated using the MOLPRO [114] package. A basis set consisting of
an augmented correlation consistent triple zeta (aug-cc-pVTZ) basis [115, 116, 117] on
the He and O atoms, and an additional set of (3s3p2d1f ) bond functions defined by
Tao and Pan [118] was used. These bond functions are placed on the intersection of
the vector R, see Fig. 7.1, and the ellipse that is chosen such that the bond functions

constant X3Σ−g [112] b1Σ+
g [113]

B0 1.437675 1.391247
D0 4.790·10−6 5.375·10−6

λSS 1.984751 –
λNS -8.425·10−3 –

Table 7.1: Spectroscopic constants in cm−1 used in this work. B0 and D0 are the rotational
and distortion constant of the vibrational ground state, and λSS and λNS the spin-spin and
spin-rotation coupling constants.
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are centered at the midpoint of R in the T-shape geometry and at the midpoint of the
smallest O-He distance in the linear geometry. We apply a correction for the basis set
superposition error with the Boys and Bernardi counterpoise procedure [119].

θ

R

r

Figure 7.1: Coordinate system for the He-O2(b1Σ+
g ) potential, where R and θ parameterise

the vector that connects the centre of mass of the oxygen molecule to the helium atom. The
interatomic distance r is fixed in the calculation of the interaction potential. The position of
the bond functions is indicated by the inner dashed ellipse.

The ground state potential, which was taken from the literature [120], was calculated
with the partially spin-restricted open-shell single and double excitation coupled cluster
method [121] with perturbative triples [122] [RCCSD(T)] method. This is, however, not
possible for the b state since two states of A’ symmetry (Cs point group) are involved
that correlate with the 1Σ+

g and 1∆g states of the free oxygen molecule. To obtain an
interaction potential of approximately the RCCSD(T) quality, a correction was devised
as discussed below.

We used the complete active space self consistent field [123, 124] (CAS-SCF) pro-
gram to distinguish the 4 lowest states of oxygen: X3Σ−g , a1∆g(A’ and A” symmetry),
and b1Σ+

g . All core orbitals were used in the active space to avoid problems with the
convergence of the calculation at small He-O2 distances. The resulting orbitals of a
CAS-SCF calculation were used as starting orbital guess for each subsequent geom-
etry, starting at large He-O2 distance. The canonical orbitals corresponding to the
He-O2(a1∆g) and He-O2(b1Σ+

g ) complexes with A’ symmetry were used as input for a
state-averaged complete active space second order perturbation theory [125] (CASPT2)
calculation. For every grid point the energy corresponding to the state with the high-
est reference energy was used for the He-O2(b1Σ+

g ) potential. To obtain a potential
of approximately RCCSD(T) quality, the difference in energy between the CASPT2
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and RCCSD(T) calculations for He-O2(X3Σ−g ) was subtracted from the CASPT2 He-
O2(b1Σ+

g ) potential at each geometry.

7.3.2 Ab initio grid

The interaction energy was calculated for 532 geometries. A rotational constant
of B0=1.3912 cm−1 [113] was used to fix the vibrational coordinate r to a value of
r0 = 2.326 a0. The radial grid (in atomic units) was spaced with steps of 0.2 from 2.9 to
8.1 and extended logarithmically with Ri+1/Ri=1.1 from 8.5 to 20.05, with one extra
point at 25. The angular grid was confined to the range of 0◦ to 90◦, and consisted of
14 Gauss-Legendre quadrature points.

7.3.3 The fit of the potential

The interaction potential V (R, θ) was first expanded in Legendre polynomials of even
order,

V (R, θ) =
12
∑

l=0,2,...

Cl(R)Pl(cos θ) . (7.23)

The radial coefficients were obtained via a Gauss-Legendre quadrature

Cl(R) =
14
∑

i=1

(2l + 1)wiV (R, θi)Pl(cos θi) , (7.24)

with 0 ≤ θi ≤ π
2

and wi the quadrature points and their corresponding weights. After
performing the 14-point quadrature of Eq. 7.24, the ab initio points could be reproduced
via Eq. 7.23 with relative errors on the order of 0.1% in the barrier at small R and
0.01% and less near the potential well and at larger R.

To obtain a fit of the radial coefficients Cl(R), the fit function was split in a long
range part C(lr)

l (R) and short range part C(sr)
l (R)

Cl(R) = C
(sr)
l (R) + C

(lr)
l (R) . (7.25)

The long range part is given by

C
(lr)
l (R) = −cnlfn(βR)

R−n
, (7.26)
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where n = l + 4, except for l = 0 for which n = 6. These are the leading terms in the
multipole expansion [126]. The fn’s are Tang-Toennies damping functions [127]

fn(x) = 1− e−x
n
∑

k=0

xk

k!
. (7.27)

To obtain a reliable fit of the cnl coefficients in Eq. 7.26, we set the damping functions
to 1 and performed a weighted least squares fit of Cl(R) for R ≥ 10 a0. The weighting
function was set to Rn with n in accordance with Eq. 7.26. The first three coefficients
are given in Tab. 7.2. We then chose β = 2.0 for C(lr)

l (R) in Eq. 7.26 and obtained

l n cn,l

0 6 10.26
2 6 2.44
4 8 -3.19

Table 7.2: Fitted leading term coefficients of Eq. 7.26 in Eh/an
0 .

C
(sr)
l (R) in Eq. 7.25, by subtraction of C(lr)

l (R) from the ab initio points. For the short
range part, the reproducing kernel Hilbert space (RKHS) method with the reproducing
kernel for distance-like variables was used [128, 129]. The RKHS parameter m was set
to the leading term parameter n minus 1 and the RKHS smoothness parameter was
set to 2.

After the RKHS fitting, reconstruction of V (R, θ) via Eqs. 7.23 and 7.25 reproduced
the ab initio points with a relative error of the order of 0.01% or better for R larger
than 4 a0. This was also the case for 35 randomly chosen geometries not used for the
fit. In the region of 2.9 < R < 4.0 a0 the largest relative error is 0.49%, the barrier to
the unphysical region below 2.9 a0 of the fitted potential is ≥ 0.05 Eh (≈11,000 cm−1).

Figure 7.2 presents contour plots of the newly computed interaction potential for
the b state and the potential for the ground state. The b state potential in Fig. 7.2(a) is
slightly more anisotropic than the ground state potential of Fig. 7.2(b). The unphysical
region of the excited state potential is indicated in grey. The global minimum for the
excited state potential is at the T-shaped geometry at R = 5.9 a0 with dissociation
energy De = 152.2µEh, and for the ground state De = 127.1µEh at R = 6.0 a0. The
local minimum for the excited state at the linear geometry has a well depth of 123.7µEh

at R = 6.9 a0, and for the ground state 116.7µEh at R = 6.9 a0.
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Figure 7.2: The two potential surfaces, in µEh, used in the scattering calculations, with the
O–O distance r indicated in the titles. The molecular axis of the oxygen molecule is parallel
to the XHe axis. (a) The computed He-O2(b1Σ+

g ) interaction potential, unphysical region
indicated in grey. (b) The He-O2(X3Σ−g ) interaction potential from [120].

7.4 Scattering calculations

In order to obtain the S matrix elements needed for Eq. 7.21 we solved the coupled-
channels equations using the renormalised Numerov method [130], with matrix elements
in a Hund’s case b basis as provided in [107]. All scattering code was written in Mat-

Lab [131]. The equations were integrated per parity, see section 7.2.3, and per Jtot in a
Hund’s case b basis. The solutions were then matched to asymptotic boundary condi-
tions in a basis of channel eigen functions. The same code was used for the scattering
calculations of helium with both the oxygen b and X state.

To test our scattering code we calculated the inelastic cross sections reported in
[106] for the ground state potential as a function of collision energy. This resulted in
good agreement for cross sections of the type N,F1 ← 1, F1 and N,F3 ← 1, F1. The
cross sections of type N,F2 ← 1, F1, however, disagreed with an overall factor. The
difference in these results could be explained by a mistake in the code used for the
work of [106], an erratum will be published.

Both ground and b state S matrix elements should be calculated at the same collision
energy. A full scattering calculation was thus required per target state, initial or final
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state of the transition, per collision energy. The total energy, the sum of the target state
energy and the collision energy, determined the basis set size used for the scattering
calculations. For the ground state we used the same settings as in [106], and for the b
state we used N ≤ 12 for total energies up to 30 cm−1, N ≤ 14 for total energies up
to 50 cm−1, N ≤ 16 for total energies up to 100 cm−1, N ≤ 18 for total energies up to
200 cm−1, N ≤ 22 for total energies up to 300 cm−1, N ≤ 24 for total energies up to
500 cm−1, N ≤ 26 for total energies up to 750 cm−1, N ≤ 30 for total energies up to
1000 cm−1 and N ≤ 32 for total energies up to 2500 cm−1.

The step size for the propagation was set to 10 steps per de Broglie wavelength and
the maximum propagation radius was set to 20 a0 for collision energies≤600 cm−1, 18 a0

for ≤1600 cm−1, and 16 a0 for >1600 cm−1. The propagation radii were determined by
visual inspection of the convergence of the diagonal S matrix elements as a function
of the propagation radius for a range in Jtot’s and a selection of total energies. This
criterion is used since S matrix elements for both potentials should be of the same
quality. The convergence criterion was a change in magnitude of the complex number
that is less than 10−4 and a for the complex phase less than 3 degrees. The highest
target state incorporated in the calculations of the spectrum are for the oxygen ground
state J = 16, and for the b state N = 16.

The convergence criterion for Jtot during the scattering calculations, was that the
average absolute value of the transition matrix elements (1-S) should become smaller
than 10−4 for two values of Jtot separated by a preset step size. This convergence crite-
rion is sensitive to the magnitude of the S matrix elements, and was chosen regarding
that a product of S matrix elements for both potentials is present in Eq. 7.21. The Jtot

step size for the ground state scattering was set to 5 and for the b state to 6. Typical
maximum values of Jtot were 20 for scattering energies on the order of 10 wave number,
and 150 for scattering energies above 1600 wave number, depending on the target state.

The spectrum, Eq. 7.17, requires a thermal average over collision energies of the
relaxation matrix Eq. 7.21. For this averaging a grid of collision energies in cm−1 was
used that started at 1 in steps of 0.5 up to 50 and from 50 in steps of 5 to 200, from
200 in steps of 25 to 1000 and from 1000 in steps of 100 to 1900. This grid was used for
a trapezoidal integration to obtain the thermally averaged relaxation matrix elements.
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7.5 Cavity ring-down experiments*

7.5.1 The experimental setup

The cavity ring-down spectroscopy [132, 133] setup used in this experiment is illustrated
in Fig. 7.3, and is almost identical to the setup used in [134]. An optical cavity was
constructed inside a pressure cell using two mirrors with a reflectivity above 99.99%
(Research electro optics) that are separated by approximately 350 mm, resulting in an
effective absorption path length of 3.5 km. The mirrors have a radius of curvature of
1000 mm. As a light source, we used a continuous wave external cavity diode laser
(Toptica DL100) with a power of about 50 mW and a wavelength around 770 nm. The
line width of this laser is on the order of 10−4 cm−1. The line width and wavenumber
of the laser were determined with a wavelength meter (Ångström HighFinesse WS/R7-
11).

Each measurement commenced with emptying our pressure cell to a pressure of a
few millibar using a membrane pump (Pfeifer Vacuum MVP 055-3). Subsequently, we
slowly filled the pressure cell with a mixture of 14.65% O2 (Linde gas, 99.9999% purity)
and 85.35% He (Linde gas, 99.999% purity) using two flow controllers (Bronkhorst
High-Tech). Additional measurements were performed using an in-house premixed
bottle containing 1.00±0.01% O2 in helium. During measurements, the wavelength
is kept fixed at a position where the contribution of spectral lines of the molecular
oxygen isotopologues is expected negligible. We achieved coupling of the light to the
cavity modes using small current variations in the diode, as well as small variations
in the cavity alignment created by slowly filling the cell with gas. This procedure
adds an uncertainty in the wavelength of about one free spectral range of the cavity
(0.016 cm−1). We continuously measured the pressure inside the cell with a diaphragm
pressure detector (Pfeiffer Vacuum D-35614), accuracy 0.3%. We detected the light
leaking out of the cavity with an avalanche photodiode (APD, Licel GmbH LP-1A
series). When the intensity behind the cavity reaches a threshold of approximately 40%
of the maximum possible intensity in the cavity, the laser was disabled within 1µs for
a period of approximately 200µs by a home-built electronic switch. We simultaneously
recorded the ring-down signal, the pressure, and the laser current with an oscilloscope
(HP infinium). All experiments where performed at a temperature of 293± 1 K.

*All cavity ring-down experiments were performed by Dr. Frans R. Spiering.
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Figure 7.3: The cavity ring-down setup used for the determination of pressure dependent
extinction. Light from the DL100 laser diode is coupled into the optical ring-down cavity,
and is partly used for the determination of the wavelength. The light leaking out of the cavity
is detected using an avalanche photo diode. When the detected signal reaches a threshold,
the switch controller switches the laser off and provides a trigger for the oscilloscope. The
oscilloscope captures the exponentially decaying signal detected by the avalanche photo diode
as well as the pressure measured by the pressure sensor.

7.5.2 Data processing

The ring-down signals as a function of time t and threshold laser intensity I0(ν̃) were
fitted by an exponent of the form [98]

I(t) = I0(ν̃) exp

{

− t

τ(ν̃)

}

, (7.28)

with τ(ν̃) the characteristic ring-down time given by

τ(ν̃) =
d

c

1

|ln(R)|+ κ(ν̃)d
. (7.29)

Here d is the cavity length, c the speed of light, R the reflectivity of the mirrors and
κ(ν̃) the extinction coefficient. The extinction coefficient is understood to consist of
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contributions from: Rayleigh scattering [135], collision induced absorption (CIA) [102],
and magnetic dipole absorption, that are summed respectively [98]

κ(ν̃) = σ(ν̃)nO2 + c(ν̃)n2
O2

+ α(ν̃). (7.30)

Here nO2 is the number density in amagat of molecular oxygen, and σ(ν̃) and c(ν̃)
are coefficients that are known from the literature for the Rayleigh scattering and
CIA, respectively. To provide the reader with a feeling for the contribution of each
mechanism to the spectrum, Fig. 7.4 illustrates the construction of the pure oxygen
A-band extinction based on the sum of the data of each of these contributions. The
illustration was taken from [98].
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Figure 7.4: Construction of the extinction κ(ν̃) of molecular oxygen gas (black) at a density
of 1 amagat in the A-band region from the summed contributions of: Rayleigh scattering
(purple), magnetic dipole absorption (red), and CIA (blue). The dashes in the region of the
R branch indicate the CIA is not determined here. The illustration was taken from [98].

To obtain the magnetic dipole absorption α(ν̃) from Eq. 7.30 we subtracted the
Rayleigh scattering and CIA for oxygen. For the index of refraction and the King
correction factor (molecular anisotropy) [136], the paper by Bates [137] was used. This
data is validated to give the correct scattering intensities [138, 139, 140]. Due to the low
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refractive index of helium, its Rayleigh scattering is negligible. The CIA contribution
was subtracted from the data by Tran et al. [100]. Their data was interpolated using
a cubic spline, and has been validated by independent measurements [98, 101]. The
CIA of helium-oxygen is neglected, based on yet unpublished data measured with our
cavity ring-down setup. Coefficients σ(ν̃) and c(ν̃) used for Eq. 7.30 are tabulated in
the Results section.

7.6 Results and Discussion

In this section the calculated results for the rotationally resolved A-band spectrum are
presented. The first focus is on the predictions of the integrated line cross sections for
molecular oxygen that are compared to experimental results from the literature. These
integrated cross sections depend on the magnetic dipole transition matrix elements for
molecular oxygen only, and do not include collisional effects.

Subsequently, the calculated results for the pressure broadening coefficients are
shown and compared to experimental results from the literature. The width of the
spectral lines is relatively insensitive to the effect of line-mixing, hence line-mixing is
not included in these calculations.

Finally, the effect of the line-mixing mechanism is studied by the prediction of
pressure-dependent absolute absorption strengths in the valleys between spectral lines.
As will be shown, the difference between including and neglecting the line-mixing
becomes most pronounced in these regions. When the line-mixing is neglected, the
spectrum is a sum of Lorentzian line shapes according to Eq. 7.22. The results of the
calculations are compared to the cavity ring-down data.

For the discussion a designation of the spectral lines of transition type |N ′M ′
N ; 1Σ+

g 〉
← |F ′′i J ′′M ′′

J ; 3Σ−g 〉 (section 7.2.2) should be defined. Here we use ∆N∆J(N ′′), with N ′′

the nuclear rotation quantum number in Eqs. 7.2, 7.3, and 7.4, depending on the choice
for Fi as the initial state of the magnetic dipole transition. Furthermore, ∆N ≡ N ′−N ′′
and ∆J ≡ N ′ − J ′′, with ∆X=−1, 0, 1 corresponding to P , Q, R, respectively. Hence
designations, such as PQ(3) or RR(3).

7.6.1 Integrated line cross sections

Table 7.3 shows a comparison between our integrated line cross sections calculated
with Eq. 7.13, and experimentally determined cross sections for the P branch [141].
These integrated cross sections test the magnetic dipole transition matrix elements for
molecular oxygen, excluding any collisional effects. The experiments were performed
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in a pressure range from 1.4 to 4.6 kPa (≈ 0.013 to 0.045 atm) on a 2% oxygen mixture
with nitrogen. The partition sum Z = 215.77 (at a temperature of 296 K) and the
transition wavenumbers ν̃Fi,J,N of Eq. 7.13 were taken from the literature [109, 142]
based on data from the Hitran database. Calculated and experimental values agree to
within 1% for line positions close to the A-band origin, and deviate increasingly for line
positions further in the P branch. The maximum disagreement is 2.5% for the PQ(15)
line.

line PQ(3) PP (3) PQ(5) PP (5) PQ(7) PP (7) PQ(9)

[141] 3.901(8) 5.738(8) 5.974(9) 7.557(9) 7.098(9) 8.423(10) 7.256(8)

calc. 3.887 5.717 5.966 7.558 7.093 8.400 7.263

line PP (9) PQ(11) PP (11) PQ(13) PP (13) PQ(15)

[141] 8.262(8) 6.667(7) 7.437(7) 5.608(5) 6.113(5) 4.338(4)

calc. 8.276 6.661 7.402 5.575 6.088 4.303

Table 7.3: Comparison of experimental [141] and calculated (Eq. 7.13, T = 296 K) integrated
line intensities in units of 10−24 cm molecule−1. Numbers in parenthesis are 1σ standard
deviations in the unit of the last digit.

7.6.2 Pressure broadening coefficients

The first test for collisional effects is the prediction of helium-O2 broadening and shift-
ing coefficients of the spectral lines in the A-band spectrum. These coefficients represent
the linear dependence of the line widths and shifts on the, in this case, helium density.
The broadening coefficients have been determined experimentally, and are reported in
the literature [143]. The line shift coefficients, however, were too small to determine
accurately. The effect of line-mixing on the line widths is expected to be negligible,
since there is no significant overlap between spectral lines at the relatively low pressures
for which the experiments were carried out (0.26 atm O2 partial pressure and a range
of 0.13 to 0.52 atm helium pressure). If line-mixing is neglected the spectrum becomes
a sum of Lorentz lines as given in Eq. 7.22. The widths and shifts of these lines are the
real and imaginary parts of the diagonal elements of the calculated relaxation matrix of
Eq. 7.20. We define the coefficients γk for the k-th spectral line in units of cm−1 atm−1

for comparison with the experiment (k corresponds to a set of quantum numbers N ′,
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F ′′i , J ′′ of the transition)

γk ≡
1

2πc

1

p0

T0

T
NL〈vσk;k〉 . (7.31)

Here p0 = 1 atm, T0 = 273.15 K, NL is Loschmidt’s number (2.6867774·1025 particles
m−3 for an ideal gas at 0◦C and 1 atm), and 〈vσk;k〉 is 〈vσFi,J,N ;Fi,J,N〉 of Eq. 7.20.
The real and imaginary part of γk represent the broadening and shifting coefficients of
spectral line k.
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Figure 7.5: Comparison between experimentally determined line broadening coefficients for
helium-O2 [143] (closed black dots with 1σ error bars), and the real part of Eq. 7.31 (black
line), with T = 298 K for the P and R branches of the spectrum. The open black dots are
experimentally determined oxygen self-broadening coefficients [144]. These are used in the cal-
culations of the absorption strengths in section 7.6.3. Uncertainties for these coefficients [144]
are of the order 10−4 cm−1 atm−1 and are not visualised.
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Figure 7.5 shows that the calculated broadening coefficients follow a smooth line
and capture the trend and magnitude of the experimentally determined coefficients.
The apparent structure in the experimental points of Fig. 7.5 is not reproduced, but it is
not obvious that this structure is significant. One argument in favour of our calculated
trend, is that the measured oxygen self-broadening coefficients, indicated with the open
black dots, display the same trend (almost by an overall factor of 4/3). The reported
uncertainties for these coefficients [144] are of the order 10−4 cm−1 atm−1 and are not
visualised. These self-broadening coefficients will be used for the calculation of the
absolute absorption strengths in section 7.6.3.

The pressure shifts that follow from the imaginary part of Eq. 7.31 are shown in
Fig. 7.6. All shift coefficients have the same sign, and have a magnitude smaller than
what could experimentally be determined by the spectrometer used by [143]. It should
be noted that the present theory does not exactly satisfy detailed balance. This is
known to affect the imaginary part of the relaxation matrix in particular [85, 86].
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Figure 7.6: Calculated pressure shift coefficients, the imaginary part of Eq. 7.31 at
T = 298 K. Coefficients for the P and R branch are indicated in grey open dots and black
closed dots respectively.

7.6.3 Pressure-dependent absorption strengths

The results shown so far, prove that the strong absorption features of the calculated
and experimental spectrum are in good agreement. The next step is to study the
weak features of the spectrum, that are most sensitive to the effects of line-mixing. A

105



Chapter 7: Pressure broadening of the oxygen A-band (paper)

comparison between theory and experiment will put the line-mixing incorporated in the
current theory to the test. Here one tests the formalism and especially the off-diagonal
elements in the relaxation matrix.

For this comparison one should look at the spectrum to find out where line-mixing
becomes most apparent. Hereto, we calculated a part of the A-band spectrum using Eq.
7.17. The transition wavenumbers ν̃Fi,J,N for the spectrum, required in Eq. 7.13, were
taken from the literature [109, 142] and are based on data from the Hitran database.
Since the collisional effects on the experimental spectrum are not solely from the
helium-O2 collisions, but also from O2-O2 collisions, the relaxation matrix elements
of Eq. 7.19 should be amended to include O2 self-broadening. The corrected matrix
elements, proportional to the helium density nHe in amagat, are

n
〈

vσHe−O2,O2−O2

F ′
i
,J ′,N ′;Fi,J,N

〉

≡ 2πcp0
T

T0

nHe(γ
He−O2
k′,k +

xO2

1− xO2

γO2−O2
k δk′,k) (7.32)

with

γHe−O2
k′,k ≡ 1

2πc

1

p0

T0

T
NL〈vσk′;k〉 , (7.33)

with 〈vσk′;k〉 the ab initio helium-O2 relaxation matrix of Eq. 7.20 including off-diagonal
elements. The γO2−O2

k are the experimentally determined oxygen self-broadening co-
efficients from the literature [144] and are shown in Fig. 7.5. These coefficients only
contribute to the relaxation matrix diagonal, which is indicated by the Kronecker delta
δk′,k. The xO2 is the fraction of oxygen in the gas mixture used in the experiment. The
calculated spectrum is shown as the black line in the central panel of Fig. 7.7. This fig-
ure provides the cross sections of oxygen molecules surrounded by helium at a pressure
of 5 atm to accentuate the collisional effects. The fraction of xO2 was set to zero.

In Fig. 7.7 we determined the effect of line-mixing by also showing the ratio of this
spectrum divided by the spectrum without line-mixing, Eq. 7.22, as a continuous grey
line. The ratios 1.0 and 0.7 are indicated as dashed horizontal grey lines. One observes
that the effect of line-mixing is strongest in between the lines. Clearly, the strongest
effect is found in between the P branch (below 13120 cm-1) and the R branch (above
13128 cm-1), where line-mixing reduces the absorption cross section. In other minima
line-mixing increases the absorption cross section.

Although being a small effect, it is not necessarily insignificant in practice. For
example, the maximum of each peak is fully saturated in the Earth’s atmosphere that
contains about 20% oxygen; hence variations in oxygen content become noticeable by
absorption changes in between the lines. To accurately measure the absorption cross
sections in between the lines, we employ cavity ring-down spectroscopy as explained in
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ν̃ c(ν̃) σ(ν̃)
cm−1 10−7cm−1amagat−2 10−8cm−1amagat−1

13081.30 1.90 2.87
13103.13 1.79 2.89
13112.48 1.76 2.89
13116.11 1.87 2.90
13122.48 2.00 2.90
13125.92 1.98 2.91

Table 7.4: Coefficients c(ν̃) and σ(ν̃) used in Eq. 7.30 to subtract the contributions of CIA
and Rayleigh scattering, respectively, from the measured pressure dependent extinction κ(ν̃)
at wavenumber ν̃.

section 7.5. Here the absorption strength expressed in cm−1 is determined as a function
of density (pressure) with a sensitivity of about 10−7 cm−1. By measuring absorption
strengths at spectral positions that our theory predicts as sensitive to the effect of
line-mixing, we will prove the added value of including line-mixing in the simulation.

The central panel in Fig. 7.7 contains six numbered arrows indicating the spec-
tral positions where the pressure-dependent cavity ring-down measurements were per-
formed. Each numbered arrow has a panel either above or below the central panel that
contains the corresponding number in the lower right corner. The fraction of oxygen
in the gas mixture is indicated in the upper left corner. Each grey dot in the figure
corresponds to one measured ring-down curve. As was discussed in section 7.5, each
curve is fitted to obtain the extinction coefficient κ(ν̃). There are between 1000 and
3000 points per panel.

At small nHe the points are distributed around zero absorption, which is caused
by an offset determined by the reflectivity of the cavity mirrors. The contribution of
CIA and Rayleigh scattering were subtracted from these points, as described in section
7.5. The values of the coefficients used for Eq. 7.30 are given in Tab. 7.4. What
remains after these corrections is the magnetic dipole absorption strength α(ν̃). Here
the experimental data is shown as a function of the helium density nHe.

Each panel contains a continuous line with the absolute predictions of the absorption
strength including line-mixing. To link the spectrum F (ν̃) to the absorption strength
we used the relation

α(ν̃) = xO2

T0

T

p

p0

NLF (ν̃) , (7.34)

where the pressure p is directly measured in the cavity ring-down experiment. Note
that Eq. 7.32 is used to compute F (ν̃). The dashed line ignores the line-mixing, the
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off-diagonal elements of the relaxation matrix, and comes from a spectrum built as a
sum of Lorentzian line shapes. A third line is generated using a semi-empirical model,
named Tonkov model after the scientist who developed the model [94, 95]. This model
constructs the effect of line-mixing using diagonal properties (observed line broadening
parameters) as a basis for predicting the effect of line-mixing, the off-diagonal influence.
This model is empirical but highly predictive.

In a number of cases the difference between the present purely ab initio and the
empirical model is very small. The fifth panel is taken in the minimum of the spectrum
of Fig. 7.7, where the effect of line-mixing is largest. Here the experiment positively
agrees with the two models that include line-mixing. The difference between the full
ab initio model and the empirical model is not large enough to allow an experimental
test.

7.7 Conclusions

The pressure broadening of the rotationally resolved oxygen A-band spectrum by he-
lium was studied theoretically. To our knowledge this is the first time pressure broaden-
ing of an electronic transition of a molecule is treated with a fully quantum mechanical
description. A new interaction potential for helium–O2(b1Σ+

g ) was computed. This po-
tential and a helium–O2(X1Σ+

g ) potential taken from the literature were used for the
scattering calculations required to calculate line broadening in the impact approxima-
tion. Regarding the spectroscopy of molecular oxygen, accurate integrated line cross
sections for 13 spectral lines in the P branch were obtained. The line broadening coef-
ficients predicted by the impact approximation treatment are in good agreement with
experimental values from the literature. From cavity ring-down experiments absolute
absorption strengths were obtained between several spectral lines. Experimental re-
sults are in quantitative agreement with those of the calculations. In particular in the
region between the P and R branch it is proven that off-diagonal elements in the relax-
ation matrix, responsible for line-mixing, are important to obtain a correct description
of the absorption strength.
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Figure 7.7: The central figure shows the calculated absorption spectrum, including line-
mixing (Eq. 7.17), on a logarithmic intensity scale at T=293 K and a partial helium pressure
of 5 atmosphere. The continuous grey line presents the division of this spectrum by the
spectrum without line-mixing, with the dashed grey lines indicating the ratios 1.0 and 0.7.
The numbered arrows indicate the spectral position of the corresponding experimental data
shown in the numbered surrounding figures. In these figures grey points are measured ab-
sorption α(ν̃) (section 7.5) as a function of helium density nHe. Other lines are line-mixing
(continuous), no line-mixing (dashed) and the Tonkov model (dash-dotted).
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Summary

The use of computers to help us perform tasks more efficiently is common practice in
the modern world. Applications vary from writing texts on your personal computer,
to complex weather and climate predictions, and embedded computers in your car or
electronic devices. This thesis covers a range of computer applications in the research
field of spectroscopy, i.e., the study of light-matter interaction. In seven chapters we
move from using the computer to steer an NMR spectrometer in search of the best
settings, to extracting information about the molecular structure of materials from
NMR spectra, and finally the computation of quantum mechanical predictions for the
absorption of light by molecular oxygen in the atmosphere. Each topic is covered by
an introduction followed by the corresponding publication(s).

In chapter 1 the problem of broad spectral features due anisotropic (angular depen-
dent) interactions in nuclear magnetic resonance (NMR) spectra of solid-state materials
is introduced. This broadening for example due to proton-proton interactions oversha-
dows the spectral features of other important interactions, such as the chemical shift or
J-coupling. Knowledge of these other interactions provides additional and important
information about the structure of the material at the molecular level. The simple
trick of mechanically rotating the material (sample) at an angle of 54.74◦ provides a
way to spatially average part of the not-wanted interaction anisotropy towards zero.
The remaining interaction anisotropy may be removed (partly) by manipulation of the
spin system with a radio frequency (rf) field. This rf-field can be shaped almost ar-
bitrarily, and combined with sample rotation it is a complex matter to find the best
pulse sequence for proton decoupling.

In the approach presented in chapter 2 an evolutionary algorithm is used to optimise
rf-pulse sequences. This is performed in a feed-back loop set up between NMR spec-
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trometer and a computer. Firstly our converged results for experiments at moderate
sample spinning speed and rf-field strength are presented. These confirm the optimal
performance of pulse shapes readily available in the literature. Simulation of the exper-
iment reproduces the experimental results, which indicates a (near) ideal behaviour of
the experimental setup and the spin system. Subsequently, an experiment is presented
that is carried out at very high rf-field strength and moderate sample spinning speed.
Here we find a new pulse sequence with a competitive performance compared to exper-
iments performed at high sample spinning speeds. Such an effective decoupling at very
high rf-field strength has not been demonstrated before in the literature. Simulation of
the experimental results shows differences, which are possibly caused by imperfections
in the phase modulation of the pulses.

In chapter 3 a new topic, the analysis of solid-state NMR spectra of quadrupolar
nuclei, is introduced. Nuclei with a quadrupole moment interact with the electric field
gradient (e.f.g.) of their surroundings. The full description of this interaction, requires
knowledge of two interaction parameters Cq and η. These parameters determine the
interaction strength and the local asymmetry of the e.f.g., providing direct information
about the different local structures in the studied material. To extract these interac-
tion parameters and the relative occurrence of the different local structures from the
experimental spectrum, we simulate and fit a theoretical spectrum to the data. This
simulated spectrum is the sum of subspectra, that each correspond to one presumed
local structure. Evolutionary algorithms are used to guide the fitting process.

Chapter 4 presents the analysis of 1D data. The first step in the simulation is
the calculation of a library of spectra as a function of η and Cq using second-party
simulation software. During the actual fitting process the library is read into the
computer’s internal memory, which allows for a fast synthesis of a theoretical spectrum.
With this approach the most time-consuming simulation step is removed from the
fitting process. In particular the fitting of spectra of disordered materials, represented
by a distribution in interaction parameters, benefits from this approach. Three case
studies are presented. The program (EASY-GOING deconvolution) has been made
available to the NMR community.

In chapter 5 the EASY-GOING deconvolution program is extended with the ability
to simulate and fit multiple-quantum magic angle spinning (MQMAS) data. The power
of this type of 2D experiment, that correlates a multi-quantum coherence with a single-
quantum coherence, is that an isotropic spectrum is obtained after transformation of
the data. Now the information of the formerly overshadowed chemical shift interaction
is obtained. In contrast to the 1D simulation model, this data is simulated using a fully
analytical model, which is both fast and accurate in describing the complex excitation
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behaviour of quadrupolar nuclei (implicitly multi-level quantum systems). Three case
studies are presented to show the capabilities of the program that is made available to
the NMR community.

In chapters 6 and 7 the final topic of this thesis is treated. Here the collisional effects
of helium on the rotationally resolved magnetic dipole A-band absorption spectrum of
molecular oxygen is studied theoretically. Molecular oxygen in the atmosphere absorbs
significant amounts of electromagnetic radiation in the A-band region (≈760 nm). Col-
lisions with other particles change the wavelength dependence of this absorption. For a
better understanding of the mechanisms involved, the relatively simple collision part-
ner helium was used. The collisional effects on the A-band spectrum are treated in the
impact approximation that is introduced in chapter 6. From this description follows
that absorption lines in the spectrum may be coupled to each other via the occurrence
of inelastic collisions, i.e., collisions that change the state of the oxygen molecule. This
is called line-mixing.

In chapter 7 a fully quantum mechanical treatment is used to accurately describe
these collisions. To this end a new interaction potential was computed for helium with
the excited b state of oxygen, the final state of the electronic A-band transition. The
theory for the spectroscopy of oxygen for this transition is described in full, before
treating the spectrum in the impact approximation. Our calculated results for the
integrated line cross sections and the broadening coefficients of several spectral lines
are in good agreement with experimental results from the literature. Additionally,
cavity ring-down data were measured to compare with the theoretical predictions. This
technique enables the measurement of minute absorption strengths between spectral
lines of the A-band spectrum that are sensitive for the effect of line-mixing. Using
these data we show that line-mixing is an important mechanism to correctly determine
the collisional absorption strength dependence. With this work we are the first in the
literature to present the fully quantum mechanical treatment of collisional effects on a
molecular electronic transition in the impact approximation.
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Samenvatting

Het gebruik van computers om taken efficienter uit te voeren is een alledaagse bezigheid
in de moderne tijd. De toepassingen variëren van het tekstverwerken op de pc, tot
complexe weer-en klimaatvoorspellingen en de ingebouwde computers in de auto en
elektronische apparaten. Deze thesis beschrijft een brede variatie aan toepassingen van
de computer in het onderzoeksveld van de spectroscopie, oftewel het bestuderen van
licht-materie interactie. Gedurende zeven hoofdstukken wordt beschreven hoe de com-
puter gebruikt kan worden voor het aansturen van een NMR spectrometer om de beste
instellingen te vinden, hoe informatie over de moleculaire structuur van materialen uit
NMR spectra kan worden gehaald, en hoe met behulp van quantum mechanica de ab-
sorptie van licht door moleculair zuurstof in de atmosfeer kan worden uitgerekend en
voorspelt. Elk onderwerp wordt beschouwd doormiddel van een introductie en het bij
het onderwerp gepubliceerde werk.

In hoofdstuk 1 wordt het probleem beschouwd van brede spectrale lijnvormen
veroorzaakt door anisotrope (hoekafhankelijke) interacties in Nuclear Magnetic Reso-
nance (NMR) spectra, in het Nederlands magnetische kernspin resonantie, van vaste
stoffen. Deze verbreding, die bijvoorbeeld wordt veroorzaakt door proton-proton inter-
acties, overschaduwt de spectrale lijnvormen van andere belangrijke interacties zoals
de chemische verschuiving en de J-koppeling. Hierdoor gaat extra informatie over de
structuur van een materiaal op moleculair niveau verloren. Een eenvoudige truc als
het mechanisch roteren van het materiaal onder een hoek van 54.74◦, maakt het mo-
gelijk om een gedeelte van de niet-gewilde anisotropie van de interactie ruimtelijk uit
te middelen richting nul. De overblijvende anisotropie kan weer verder worden ver-
wijderd doormiddel van het manipuleren van het spinsysteem met een radiofrequent
(rf) veld. Dit veld kan een nagenoeg willekeurige vorm gegeven worden. In combinatie
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met de mechanische rotatie wordt het vinden van de beste pulssequentie een complex
probleem.

De aanpak die wordt gepresenteerd in hoofdstuk 2 is het gebruik van een evolu-
tionair algoritme voor het optimaliseren van de rf pulssequentie. Om dit te bereiken is
een feed-back loop tussen NMR spectrometer en computer opgezet. Eerst worden de
geconvergeerde resultaten gepresenteerd voor experimenten bij matige rotatiesnelheid
en rf veldsterkte. Deze experimenten bevestigen het optimaal presteren van pulsse-
quenties uit de literatuur. Simulatie van de experimenten reproduceert de resultaten.
Dat geeft aan dat de experimentele opstelling zich nagenoeg perfect gedraagt. Daarna
wordt een experiment gepresenteerd dat is uitgevoerd bij matige rotatiesnelheid en zeer
hoge rf veldsterkte. Hier vinden we een nieuwe pulssequentie die competitief presteert
in vergelijking met experimenten uitgevoerd bij hoge rotatiesnelheid. Simulatie van dit
experiment reproduceert de resultaten niet volledig, dit is mogelijk veroorzaakt door
imperfecties in de fasemodulatie van de pulsen in het experiment.

In hoofdstuk 3 wordt een nieuw onderwerp gëıntroduceerd, namelijk de analyse van
vaste stof NMR spectra van quadrupoolkernen. Atoomkernen met een quadrupool mo-
ment hebben een interactie met de elektrische veldgradiënt (e.v.g.) van hun omgeving.
De beschrijving van deze interactie ligt vast aan de hand van twee interactie parameters
Cq en η. Deze parameters beschrijven de interactiesterkte en de lokale asymmetrie van
de e.v.g., en geven daardoor directe informatie over de verschillende lokale structuren
in het bestudeerde materiaal. Het bepalen van de interactieparameters en de relatieve
hoeveelheden van de lokale structuren uit het experimentele spectrum, wordt gedaan
aan de hand van het simuleren en fitten van de data. Het gesimuleerde spectrum is de
som van subspectra, waarvan elk subspectrum correspondeert met een lokale structuur.
Evolutionaire algoritmen worden gebruik om het fitproces te sturen.

Hoofdstuk 4 behandelt de analyse van 1D data. De eerste stap in de simulatie is het
berekenen van een bibliotheek van spectra als functie van η en Cq met reeds beschik-
bare simulatie software van een andere onderzoeksgroep. Gedurende het fitproces is de
bibliotheek in het computer werkgeheugen geladen, dit zorgt voor de snelle synthese
van een theoretisch spectrum. Met deze aanpak is de meest tijdconsumerende stap uit
de simulatie gehaald. Met name het fitten van spectra van wanorderlijke materialen,
gerepresenteerd door een distributie van interactie parameters, gaat sneller met deze
aanpak. Drie toepassingen van het programma worden besproken. Het nieuwe pro-
gramma, genaamd EASY-GOING deconvolution, is beschikbaar gesteld voor de NMR
gemeenschap.

In hoofdstuk 5 wordt het EASY-GOING deconvolution programma uitgebreid met
de mogelijkheid om multi-quantum magic angle spinning (MQMAS) data te kunnen
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simuleren en fitten. De kracht van dit type 2D experiment, dat multi-quantum co-
herentie correleert met single-quantum coherentie, is dat het isotrope spectrum wordt
verkregen na transformatie van de data. De informatie over de voorheen overschaduwde
chemische verschuiving interactie wordt zo beschikbaar. In tegenstelling tot het 1D
simulatie model, wordt deze data gesimuleerd aan de hand van een volledig analytisch
model wat zowel snel als accuraat het complexe excitatiegedrag van quadrupool kernen
(impliciet multi-level quantum systemen) kan beschrijven. Drie toepassingen worden
besproken om de mogelijkheden van het programma te laten zien.

In de hoofdstukken 6 en 7 wordt het laatste onderwerp behandeld. Het gaat hier
om de theoretische studie van de botsingseffecten van helium op het rotatie-opgeloste
magnetische dipool A-band absorptie spectrum van moleculair zuurstof. Moleculair
zuurstof in de atmosfeer absorbeert significante hoeveelheid elektromagnetische straling
in de A-band regio (≈760 nm). Botsingen met andere deeltjes veranderen de golflengte
afhankelijkheid van deze absorptie. Om de deelnemende processen beter te kunnen
begrijpen, wordt de relatief eenvoudige botsingspartner helium gebruikt. Het botsings-
effect op het A-band spectrum wordt beschreven in de impact benadering die wordt
gëıntroduceerd in hoofdstuk 6. Uit deze beschrijving volgt dat absorptielijnen in het
spectrum met elkaar gekoppeld kunnen zijn door inelastische botsingen, oftewel bot-
singen die de toestand van het zuurstof molecuul veranderen. Dit mechanisme wordt
line-mixing genoemd.

In hoofdstuk 7 worden de botsingen volledig quantum mechanisch beschreven. Om
die reden is er een nieuwe interactie potentiaal berekend tussen helium en de elek-
tronisch aangeslagen b toestand van zuurstof, de eindtoestand van de elektronische
A-band overgang. De theorie voor de spectroscopie van zuurstof voor deze overgang
wordt volledig uitgeschreven, voordat het spectrum in de impact benadering wordt
gegeven. De berekende resultaten voor de gëıntegreerde lijndoorsnedes en de bots-
ingsverbredingscoëfficiënten voor meerdere spectrale lijnen komen goed overeen met
de experimentele resultaten uit de literatuur. Daarnaast zijn er cavity ring-down ex-
perimenten uitgevoerd om te kunnen vergelijken met de theoretische voorspellingen.
Deze techniek biedt de mogelijkheid om minieme absorptiesterktes te meten tussen
de spectrale lijnen in het A-band spectrum, gebieden die gevoelig zijn voor het effect
van line-mixing. Met behulp van deze data laten we zien dat line-mixing een belang-
rijk mechanisme is voor het correct beschrijven van de botsingsafhankelijkeheid van
de absorptiesterkte. Met dit werk zijn we de eerste in de literatuur die laten zien
dat het mogelijk is om met een volledig quantum mechanische beschrijving en de im-
pact benadering de botsingseffecten op een moleculaire elektronische overgang goed te
beschrijven.
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