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The Hyperfine h-Doubling Spectrum of 14Ni60 and 15N160 

W. L. MEEKTS AND A. DPMANUS 

Depurtment of Physics, L:niversiig of Nijnregen, Xijmegen, The Xefherlands 

The molecular beam electric resonance method was used for the investi- 
gation of the hyperfine A-doubling transitions AJ = 0, AF = 0, fl for a num- 
ber of J values of both the 2111,z and the %a/2 states of the molecules IaNI 
and 15N1B0. The observed spectrum is explained using the degenerate per- 
turbation theory introduced by Freed (1). This theory is adapted for a % 
molecule and includes contributions up to third order in fine and hyperfine 
structure. The agreement between observed and calculated values is satis- 
factory. 

I. INTKOl>UCTION 

The microwave spectrum of NO was measured previously by Gallagher and 

Johnson (d), Favero et al. (3), and by Brown and Radford (4). The A-splitting 

constants and the hyperfine structure constants were determined from these 
measurements. Recently Neumann (5) measured the hyperfine A-doubling 

spectrum of 14N160 with the molecular beam electric resonance method and 
obt,ained accurate frequencies of the AJ = 0 transit.ions and values of t.he 

molecular coupling constants. For t’heoretical interpretation of the spectrum 

Neumann used the degenerate perturbation theory (DPT) discussed by Freed 

(1) with fine-structure contribut.ions up t,o fourth order and hyperfine structure 
contributions up to second order. The agreement between experimental and 

t’heoretical results looked very satisfactory. 
The present investigation on NO was intended both as a first step and as a 

test case in a program on hyperfine structure of open-shell molecules using the 
molecular beam electric resonance method. In addition to reproducing the 

measurements of Neumann (5) we were able to measure a large number of 
transitions in higher J states of the “II 112 and ‘II,,, states of both 14N0 and ‘“NO. 
These transitions extend over a region from about 0.7 MHz to about 1.5 GHz. 
Especially the high-frequency transitions might be of interest to radioastron- 
omers. When fitting the present measurements in 14JS0 it was discovered that 

the frequencies predicted by Neumann (5) for the ‘II,,, state deviated from our 
experimental values by even as much as 250 kHz. It was not possible to explain 
these deviations within t,he scope of the theory used by Neumann. Consequently 
we decided to extend the theory by including hyperfine-structure contributions 
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up to third order. This yields new contributions to t#he energy, which have a 

.I dependence which differs from that present in the theory used by previous 
investigations (2-5). The new contribut’ions result in a much bet,ter agreement 
between theoretical and experimental frequencies for both molecules. 

II. THEORY 

II. 1. Hanailtmiun 

The complete Hamiltonian for a diatomic molecule can bc written formally as 

H = Ho + XV + x’V’, (1) 

\\hcrc Ho is the nonrelativist’ic Hamiltonian for electronic energies in the Born- 
Oppenheimer approximation, V contains t’he spin-orbit and gyroscopic terms 

which give rise to the A splitting, and V’ describes the hyperfine contributions. 

k’or V wc used 

V = R(J’ - L,2 + S2) + AL,& - 2BJ.S 

+ (B + 1/i A)(L+S- + L-S+) - B(J+L- + J-L,). (3) 

The Hamiltonian V of Ey. (a) is in accordance with that of Van Vleck (0’1, 

buf differs slightly from the one used by Freed (1). For the hyperfine Hamil- 

t&an V’ we used the expression given by Freed ( 1). This rather complex ex- 
pression will not be reproduced here. 

With the Hamiltonian (1) t,he spectrum of a ‘II state is calculated using the 

degenerate perturbation theory (DPT) described by Freed (1). The contribu- 
t,ions of the fine and hyperfine interactions to the energy are taken into account 

up to third order. In the final expressions for state energies we separat’e terms 

wit,h different dependence on the rotational quantum number J, as only these 

terms can be determined from the experimental data. The results show that the 
fine-structure effects up to third order describe, within experimental accuracy, 
t,he .I dependence of the contributions to the h splitting. The hyperfine contribu- 

tions up to third order have to be considered in order to obtain an acceptable 
agreement with experimental results, but the fourt’h-order contributions are 

below the experimental accuracy and are neglected (see also Section V). In the 

calculat,ions the interactions of excited ‘3, *II, and ‘A states with the ground 

S’II state are considered. 

II. 2. Wavefunct,ims, Symmetry and Energy J/atrix 

The ground electronic state of NO is a *II state. Application of DPT with the 
Hamiltonian (1) makes it necessary to solve a 3 X 4 secular equation (1). 
However, the Hamiltonian (1) is invariant under reflections of the coordinates 
and spins of all particles in a plane containing the nuclei. Consequently, if wave- 
functions are used with the proper symmetry (called Kronig symmetry) with 
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respect to these reflections (see also Appendix A), t’he secular determinant 

factors in two 2 X 2 determinants. 
The coupling scheme of the angular momenta in the SO molecule is nearly a 

Hund case (a) (7, 8). Wavefunctions, including the rotation of the nuclear 

frame, are formally written as ( *I’*p, J ), where r = S”, II, A, . , and Cl is 

t’he projection of the total angular momentum J on the molecular axis. These 
wavefunctions are defined by 

(*rfln, J) = (l/da) [I JAX) f (-1)” 1 J - A - S - a)] is) 

with D = A + 2. The functions on the right-hand side of Eq. (3) are given by 

Freed (1). Their Kronig symmetry is f ( - 1) ‘-“* (see also Appendix A). The 

phase factor ( - 1)” has significance only if r = Z’, s = h,inwhichcase (-l)“= 

lfors= +,and(-l)“= -lfors= -. 

The matrix elements of the fine- and hyperfine-structure Hamiltonian for 

a ‘II state on the basis defined in Eq. (3) are calculated using the results of 
Freed (1). The nuclear spin I of the nitrogen atom is coupled with Dhe rotat’ional 

angular momentum J to F in the conventional way: J + I = F. The results are 

given in Tables I and II.’ Only matrix elements, which are important for further 

calculat’ions are tabulated. The matrix is Hermitian. 
In V should also be included the term y N.S. This term is discussed F: 

tensively by Freed (1). Its contributions to the energy are of the orda l ot 
100 J4Hz. However, in first order (see Section II. 3) this term does not cm- 

tribute to the A splitting. The mat’rix elements of y N .S can easily be cal- 

culated using the formulas of Ref. (1) . They have exactly the same J dependence 
as V of Table I, and give only a correction to {i and Bi , which are an order of 

magnitude smaller than those from V. It, is clear that these terms can be ab- 
sorbed in V for further calculations, if we are only interested in terms with a 

different J dependence. This has been done without changing the definitions of 

t’hese constants used in Table I. 
In Tables I and II (and in the following) the symbols *Es* (i), “II’ (I 1, and 

‘A* (k) indicate a *5, “II, and *A excited electronic state, respectively; the index 

in the brackets numbers t.he state. Table III defines the quantities used in 
Tables I and II, where G, D, K, and Q are the molecular constants defined by 
Freed (1) . The indices correspond to the A values of the initial and final states, 

respectively. 

II. 3. Fine Structure 

Because we measured A-doubling transitions from a Kronig + to a Kronig - 
state within one J state, only contribuOions to the A splitting are of interest, 
i.e., contributions different for states with an opposite symmetry. From Table I 
it is seen that only the *Z” states give a contribution to the A splitting. 

1 A factor -\/[Z(2Z + l)(Z + l)] is missing in the 4th equation of Table V of Ref. (1) 
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Table III Definition of the quantities used in Table I 

and II. 

X = J(J+l) 

Y 
= F(F+l) - J(J+l) - I(I+l) 

2J(J+l) 

2 

U 

= v(J-;)(J+3/2) 

= $C(C-1) - J(J+l) I(I+l) 

C 

21(21-l) J(J+1)(2J-1)(25+x) 

= I(I+l) + J(J+l) - F(F+l) 

v = 

*If 
Bn 

Bz 

'RS 

oi 

'i 

A,(l) 

yl) 

n ,(k) 

n*(k) 

Gi 

Di 

'i 

Y,(l) 

spin-orbit coupling constant of the X2 II state 

rotational constant of the X211 state 

rotational constant of the 22 state 

Describes the nuclear spin-rotation interaction 

= 42C(i)(I(B+iA)L_I(X2n> 

= c2Z(i)\ IBL_IIX211> 

= <211(1)(IA(/X211, 

= <2n(, 

= c?n 
= a% 

I bl lsn> 1)’ 

II 

II 

= G lO( 

BL-1 j2A(k)> 

(B+~A)L_\ 12A(k)> _ A;; /J3 

142 i) 
= ’ DIO(i) 

= 4J6 QlO(1) 

= i(G 11(l)_ $J6 51(l)- id6 51(l)) 
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Table III (continued) 

Y $) = D1-l(l) 

Yj(l) = %(l) 

Y&l) = 91(l) - K1l(l) l/J6 

Y5(l) = 2J6 Q,_,(l) 

Y&j 
1 

= 3’2(Gll(l) + 7z K1l(l) + 3 & Dll(l)) 

GA(k) = G12(k)‘J2 

DA(k) = 1 D,2(k) 

QAbd = ' & %2(k) 

The n-th (n = 1, 2, 3)-order perturbation Hamiltonian V"" is defined by 

Freed (1, Eq. (3.2)) 

v(l) = v > (4) 

p = c v 12g2(i)>(“s2(~) I v 
i (rr2,“) ’ 

(5) 

v(3) = VP) + v’3’ 
2 1 (6) 

vl3’ = c 
v 1 “z;f,(i>>(“z;f,(i) I v / “z$(d)(“x7‘2(~) I v 

(rIp)(nz,~) 
, (7) 

i,j 

g3’ = _ c v ( “Z,“$(i))(“c2(~> I v I ~a*>&* IV 
i.a (Ilz;y 

(8) 

Herein 1 #a* ) is one of the _&I* states, and (H 2,“) = EXZII - Ezxa(q , the 

energy difference between the X”II and the 6th excited 2JY state. 
?J\TOW we make the following approximation: 

(“Zs,~(i)~ v 1 ‘r;g(j>) = &(J + >g2 It (-l)“&(J + Pi), 

where Bz is an effective rotational constant of the Z states. With this approxi- 

mation Vi" becomes 

p’ = .y- v / “2;%4)(“$2(4 I v 
1 J 

I (rw)2 
[Bz(J + +Q2 f (-l)“Bz(J + %)I. (9) 

In the Tables IV, V, and VI, are tabulated the first-, the second-, and the third- 
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Table IV First order energy contributions due to fine 

structure. 

< “;I! I 2 2 (1) y> = 
; 

- $A, + Bl.$J+;)2 

2_+ 
< '312 - 

/Vw,2Tif 
3/2 

> = $q, + Bn(J(J+l)- 94) 

27I+ J,(l) ]%f> 
312 - B 

= Bn z 

Table V Second order energy conditions due to fine 

structure. 

42) (J+;)2 f (2J++ + A:2’ 

f d2)(J-1)(~+$) 

<211k 
312 - "I' = 

,V92 + z Ai2) z (J+%) 

order contributions to the energy due to the fine st.ructure, respectively, while 

in Table VII are defined the quantities used in Tables IV-VI. The (+) and 
( - ) signs in Tablc VII indicate that the sums extend only over 3” states with 

s= +ands= -, respect.ivcly. The fine-structure contributions from Tables 

IV-VI are collected in Table VIII according to their ,/ dependence. 

II. 4. Hypwfine C’vnthhms 

The hyperfinc structure gives contributions to the energy in second and 

third order. The second-order hyperfine Hamiltonian is V’, the third order con- 
sists of three parts. These parts describe the interaction with the excited Z, II, 
and A states. The interaction Hamiltonian can be writken formally as 

V$ = Vg’ (S) + V;;’ (II) + Vi:’ (A), (10) 
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Table VII Definitions of the molecular constants used in 

Table V and VI, 

(n) 
*k 

-(n) 
4x 

(n)+ 
A1 

(nJ+ 
A3 

= p+ + *I- 

= ,cn)+ _ t)- 

= L yi a 

$ (III; )n-’ 

= 2l oioi 

c+ (lIzi )n-’ 

n=2,3 

k= 1, 2, 3 

a The sums extend for the (+)sign only over C+ states, for 

the (-Isign only over the C- states. 

with 

(11) 

vL;, ca) = c _iv ( ‘A;,:! (x:,}(‘A& (kj 1 V’ I v’ / 2A:,:! (kj)(2A:/z (k) I v 
L_ ___~. 

I; (ITA! (n&1 

+ V / 2A$,g (kj)(2A$,2 (k) 1 V’ + v’ ) 'A$2 W))(%$a (k) I”‘\.. 
(1X) 

(nA,) WA,) 
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Table VIII Collected contributions to the fine structure 

up to third order (V (1 )+v(2)+v(3) = H ) 
- _ F' - 

<2il-;I$F12n;> = 

- ja1+a2(J+Z.)2+a,0(J+i)4~a3(2J+1)'a4(J+1.)3,,5(J+a)e2 

‘2”;,21gF12”;,2’ = afh+B,(J(J+l)- $)+agZ2+a,o(J+~)2z2+(J+~)z2 

With a, = 

a2 = 

a3 = 

"4 = 

a5 = 

a6 = 

a7 = 

aa = 

a9 = 

a10 = 

all = 

(2) 
Bn+A2 +8%A2 

(3)+(A(3)+A(3) 
1 3 )h3,-B,)+A~3)B, 

x(2) -(3) 
1 +JAl wA3 

-(3jB 
c 

x(3) B +2$3)(B,-B,) 
2 c 

- iih3)B, 

(2) 
BriCAl 

+B,(A\3)+iA(3)- jAi3)) 
2 

A2 
-(2)+x;3)(B,_B,)+$3)Bn 

d3)(B -B ) 
2 c TI 

(2) 
A2 

_ $AA3' 13) 
(+bB&A, Bn 

AA3)(BE-Bn) 

(A( 3)+A(3) 
1 2 )&-B& 
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Table X Definition of the molecular constants from Table IX. 

% = d(G,,- 6 96~ ,l- 96D,,)+2 
pi+ _ i;r Yyy 

i 1 

B2 
= Dl_,+2 L -1F 

Di<i+Oi(Gi+Di) Y*(l)$(l) 

- i (n 1;' 
z- 

1 (n Jr,) 

Bj 
= $(G,,+ 36~,,+ + 

+2 t 

(~ii,(lb-25.&1))y6(1) 

1 (n n,) 

B4 = $6(D,,-K,,)+ 
Lx_ 

Di'i-Oi(Gi+Di) 

z- -3 
DA(k$(k) 

* 
1 k (fl Ak) 

z + 
rt2(k)fGA(k)-DA(k)) 

L + 
- i$(1)fY,(1)+v6(1)) 

k (n Ak) 1 (II Cl 1 

L Bg = 2 
Si(Gi+Di) 

i (Jf Eq) 
Lx_ 
+ 

Y,flqp 

1 (n nl) 

"6 = -2 z- 

(Gi+Di)Si 
+2 

i (n $) 

L 
5 = 2 1 

Bn(l)Y6(l) 

(n n,> 

” = 
rl,(k)IGA(k)+DA(k)} 

(n Ak) 
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Table X (continued) 

Bg = 2 
t 

n,(k) [GA(kbDA(k)] + 
t 

2 Yqqp) 

k (n Ak) I (n n,) 

B,o= 2 
t 

Y2m$W 

1 (n n,) 

B,,= 2 
t 

YpB*(l) 

1 In nl) 

%2 = z- (-1P 
5i (Di+Gi ) 

+ i 
(n 1;) 

4Q1 I- t 
Ypx&l) 

-2 
t 

+)QA(k) 

l (n n,) k (n Ak) 

4Q,,+ 2 
t 

q.p-28n(l))Yj(1) n,bdQA(k) 

1 (n n,) (n q 

246 Q,_, + 
t 

QiSi 
(-l)* - 

i (n $) 

E 2 
vpqp 

1 (n n,) 

z 
2 

v5qw 

1 (n n,f 
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Table X (continued) 

i 

Qi'i 

(n $1 
+ 

r12(k)QA(k) 

k (n Ak) 

The second- and third-order hyperfine contributions due to the fine structure 

are easily calculated using Eqs. (II)-( 13), and Tables I and II. The result is 
given in Table IX, while in Table X are defined the relations between the 

molecular constant,s of Tables IX and III. 

Experimentally we can separate only terms with a different J dependence. 
This reduces the equations of Table IX to t,hose of Table XI. The equations 

given in Tables VIII and XI are the final results. The molecular constants 

defined in these equations should describe the hyperfine A-doubling spectrum 

up to third order in energy. The theory outlined above is used to analyze the 
experimental spectrum. The constants are adjusted by a least-squares method 

to fit the experimental data. 

III. EXPERIMENTAL RESULTS 

The experiments were performed using the molecular beam electric resonance 

method. The experimental setup has been described in detail elsewhere (9). 

For the measurements on 15N160 we used an enriched (95 %) sample. The gas 

was recovered after every run of about 4 hr. The loss was approximat.ely 1.5 % 

per run. The measured frequencies involved the electric dipole transitions from 

a +Kronig symmetry level to a -Kronig symmetry level, within one J state. 

The NO molecule in its ‘II state has a very strong Zeeman effect, and the 

transitions of the ‘IIa/J state are strongly split’ by the earth’s magnetic field. 

These splittings decrease with increasing J value. The AF = 0 transitions are 

seen as triplets. The frequencies of the central lines of these triplets are, within 

experimental accuracy, those of the zero field transitions. The AF = fl transi- 

tions appear as broad doublets (14NO) or triplets (“NO) symmetrically located 

about the zero field frequencies. We were able to minimize the magnetic field to 

N 5 mG, The full line widths were lo-20 kHz for J = 3$, and pi of 2II,,2 , and 

less than 10 kHa for the ot.her transitions. 



c2ni 1 ynf 
5 - 

I 
2_+ 

II;> = YI(x,+z~x~)‘(J+~)O($~~~~)~ + 

+ uI(z-x)(s,+54J(J+1))~~5z2(J~~)} 

<2”:/2 I !&I 2”;,2> = Y{x3+z2xT) + 

+ uI+)k2+C4J(J+1)) + k7*s5(J+i))z21 

<2T[?l$f12n;,2> = zYI(Xq+z2Xg -x9 )+ (J+i)> + 

+ zuI~(~~+~gJ(J+l))(J+1)+(56-?4J(J+l))) 
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Table XI Hyperfine structure contributions up to third order 

after collecting terms with the same J dependent-e. 

with x, = f3,+E$+ZcRS 

X2 = B2+B,() 

X3 = B3+B7-388+z CB 

x4 = B4 

X5 = e5+t39+cRs 

x6 = ‘10 

x7 = B6+B7+B8+Cm 

x8 = ‘11 

X9 = %2 

The observed transition frequencies at zero electric and magnetic fields and 
their uncertainties are given in Table XII for 14N1’0, and in Table XIII for 

16N160. 
As can be seen from Table XII the experimental results of Neumann (5) on 



Table XII Observed and predicted hy-perf'ine A-doubling 

transitions for 
14,16, 

. 

Observed frequencies (MHz) 

previous Calculated 

J R F, Fa This work measurements (5) frequencies 

0.5 0.5 0.5 0.5 

1.5 1.5 

1.5 0.5 

0.5 1.5 

1.5 0.5 0.5 0.5 

1.5 1.5 

2.5 2.5 

1.5 2.5 

2.5 1.5 

0.5 1.5 

1.5 0.5 

2.5 0.5 1.5 1.5 

3.5 3.5 

3.5 2.5 

2.5 3.5 

2.5 1.5 

1.5 2.5 

3.5 0.5 4.5 4.5 

4.5 3.5 

3.5 4.5 

3.5 2.5 

2.5 3.5 

1.5 1.5 1.5 1.5 

2.5 2.5 

1.5 2.5 

2.5 1.5 

0.5 1.5 

205.9510(2) 

431.1905(2) 

411.2056(2) 

225.9357(2) 

560.8538(2) 

651.5425(2) 

801.1963(2) 

758.9106(2) 

693.8282(2) 

624.6494(2) 

587.7467(2) 

929.259 (4) 

1160.7768(3) 

1114.677(15) 

1072.596(12) 

991.7338(2) 

964.023 12) 

1514.768 (1) 

1434.588 (1) 

1467.511 (1) 

1325.299 (1) 

1348.459 (4) 

0.612 (1) 

1.029 (1) 

74.931 (3) 

73.286 (3) 

46.464 (3) 

33G 

205.951(l) 205.9582 

431.191(l) 431.1587 

411.206(l) 411.1886 

225.936(1) 225.9282 

560.8529 

651.543(l) 651.5275 

801.2179 

758.9379 

693.8076 

624.6259 

587.7545 

929.2441 

1160.8073 

1114.7102 

1072.6308 

991.7351 

964.0428 

1514.7580 

1434.6099 

1467.4984 

1325.2872 

1348.4151 

0.612(i) 0.6118 

1.029(l) 1.0288 

74.930(l) 74.9212 

73.289(l) 73.2806 

46.470(5) 46.4567 



Table XII (continued) 

Observed frequencies (MHZ) 

previous Calculated 
J R F, Fa This work measurement (5) frequencies 

2.5 1.5 2.5 1.5 3.121 (1) 

3.5 3.5 3.923 (1) 

3.5 2.5 47.211 (1) 

2.5 3.5 40,172 (6) 

2.5 1.5 34.390(30) 

3.5 1.5 3.5 4.5 39.221 (2) 

2.5 3.5 31,550 (4) 

4.5 1.5 5.5 4.5 40.512 (1) 

4.5 3.5 35.045 (2) 

5.5 1.5 4.5 4.5 31.124 (1) 

5.5 5.5 30.265 (1) 

6.5 6.5 32.425 (1) 

5.5 6.5 48.786 (1) 

6.5 5.5 13.905 (1) 

6.5 1.5 5.5 5.5 49.405 (1) 

6.5 6.5 48.578 (1) 

7.5 7.5 51.260 (1) 

7.5 6.5 63.640 (11 

6.5 7.5 36.196 (1) 

6.5 5.5 59.742 (1) 

5.5 6.5 38.243 (1) 

7.5 1.5 6.5 6.5 73.540 (1) 

7.5 7.5 72.786 (1) 

8.5 8.5 76.025 (1) 

7.5 8.5 85.255 (1) 

8.5 7.5 63.552 (1) 

6.5 7.5 81.547 (1) 

7.5 6.5 64.778 (1) 

3.121(l) 

3.923(l) 

47.212(l) 

31.124(l) 

30.265(l) 

32.425(l) 

49.405(l) 

48.577(l) 

51.260(1) 

73.540(l) 

72.786(l) 

76.025(l) 

3.1203 

3.9226 

47.2122 

40.1693 

34.3715 

39.2310 

31.5415 

40.5129 

35.0452 

31.1251 

30.2649 

32.4242 

48.7861 

13.9029 

49.4056 

48.5772 

51.2598 

63.6409 

36.1960 

59.7421 

38.2406 

73.5397 

72.7853 

76.0240 

85.2563 

63.5530 

81.5468 

64.7783 

337 
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T able XII (continued) 

Observed frequencies (MHz) 

J 51 F, Fa 
previous Calculated 

This work measurements frequencies 

8.5 1.5 7.5 7.5 104.216 (2) 104.2147 

8.5 8.5 103.575 (2) 103.5746 

9.5 9.5 107.400 (1) 107.3400 

9.5 8.5 114,024 (1) 114.0220 

8.5 9.5 96.951 (1) 96.9526 

8.5 7.5 110.306 (1) 110.3057 

7.5 8.5 97.483 (1) 97.4836 

a F, F-state with Kronie symmetry +. 

14N160 agree very well with ours. However, his predicted frequencies (5), espe- 
cially for the ‘IIli2 state, show a great discrepancy with our experimental results. 

IV. ANALYSIS OF THE SPECTRUM 

From Table VIII it follows that the A splitting is determined by the constants 
(Y, , and (Ye . We make the following approximations for the other 

~~le~u~a~ Constants from Table VIII : 

ffl = An; a2 = Bn + a; ciei = Bn + (~3; a@ = a7; ~~10 = (~11 = 0. 

This is a permitted approximation, because terms which do not contribute 

directly to the A splitting must be at least of the order of 10 MHz to give higher- 

order effects on the energy within the present experimental accuracy (about 

1 kHz). From Table VIII it follows that cys = CY~(BII-B~)/BII . As An and BII 
are known from other experiments the A splitting is described up to third order 

by four constants CQ , w , CY~ , and (~7 . 

IV. 1. 15N160. 

The absence of the contributions from electric quadrupole interact,ion in 
15N160 (I = $5) simplifies the spectrum considerably. Nine hyperfine structure 
constants, all x, have to be determined for this molecule. 

We calculated the coefficient matrix, which describes the dependence of the 
calculated frequencies on the various constants. The rank of this matrix was 



Table XIII Observed and calculated hyperfine h-doubling 

transitions for 15,16, . 

J R F, 
Observed Calculated 

F frequencies (MHz 1 frequencies (MHz) 

0.5 0.5 o 
0 
1 
1 

1.5 0.5 1 
2 
1 
2 

2.5 0.5 2 
2 
3 
3 

3.5 0.5 3 
4 

; 
1.5 1.5 2 

1 
1 
2 

2.5 1.5 2 
3 
2 

3.5 1.5 z 
3 

z 
4.5 1.5 4 

4 
5 

5.5 1.5 2 

ii 

6.5 1.5 2 
6 
7 
7 

7.5 1.5 8 
7 
8 
7 

0 

1 
0 
1 
1 
1 
2 
2 
2 
3 
2 
3 
3 

z 
4 
1 
2 
1 
2 
3 
2 
2 
3 
3 
4 

il 

2 

z 
5 

ii 
6 

2 

67 

! 
8 
8 

482.6212(2) 
309.2256(2) 
290.6565(2) 
790.9748(3) 
742.8364( 3) 
670.7076( 3) 
622.5690(3) 

1121.1513(3) 

1015.4147(5) 
958.9183(3) 

1454.9160(5) 

84.589 (2) 

0,780 (5) 
55.738 (3) 

3.393 (3) 
3.154 (1) 

50.2509(5) 
28.6642(5) 
27.6570(5) 

6.070215) 
62.2184(5) 
45.4609(5) 
44.092015) 
2‘7.3347(5) 
80.4891(5) 
67.5905(5) 
65.8107(5) 
52.9121(5) 
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501.1979 
482.6189 
309.2217 
290.6426 
790.9651 
742.8346 
670.7201 
622.5896 
1121.1691 
1064.6944 
1015.3914 
958.9167 
1454.9013 
1394.6320 
1355.0719 
1294.8026 
84.5877 
82.9340 

o .8732 
0.7804 

55.7429 
49.1965 

3.3923 
3.1542 

45.5804 
29.3107 

8.3544 
7.9152 

44.5249 
16.5308 
15.8352 
12.1591 
50.2511 
28.6634 
27.6578 
6.0701 

62.2183 
45.4604 
44.0927 
27.3349 
80.4891 
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Table XIII (continued) 

8.5 1.5 8 9 105.3590(5) 105.3590 
8 8 95.6788(5) 95.6795 ' 
9 9 93.4413(5) 93.4403 
9 8 83.7610(5) 83.7608 

a F+ F-state with Kronig syrr_wtry t. 

smaller than the number of constants. Consequemly not all constants can be 
determined independently from the experimental dat’a. It turned out that there 

is a relation between x-r , x5 , and x7 . From the coefficient matrix it follows, that 
the effect of x4 on the energy can be absorbed in an effective x6’, and ~7’: 

x5’ = x5 - ax.( , (14) 

x7’ = x7 + ffx-l . (15) 

The constants x6 and x7 in Table XI are replaced by x6’ and ~7’ , respcct~ively, 

whereas the effect of XA in the matrix clement (‘I~?,z / Hnr ( %$p~) of Table XI 
can be taken as zero in the fitting procedure. The value of a is calculated from 

the coefficient matrix. The result’ing (Y (Table XIV) is varying very slowly 
with increasing J. The error in the value of LY is set equal ho the maximum vari- 

ation in a! with increasing J. 
The molecular constants (~3 , w , a5 , (~7 , XI , xz , x3 , x5’, x6 , x7’, xs , ad x9 

are varied in a least-squares fit of t’he experimental spectrum. The const)ant 
x8 was found to be very small, and was subsequently set at zero. 

Using Eqs. (14) and (15) we calculated x-l and (~6 + ~7) from x5’ and ~7’. 
Table XIV lists the values of the molecular constants of the best least-squares 
fit. The calculated frequencies are given in Table XIII. 

IV. 2. 14N160 

The hyperfine-structure constants x1 through x9 are determined in the same 

way as for 16N160. The nuclear spin 1 = 1 of 14K introduces a cont’ribution Do the 

hyperfine energy due to t’he electric quadrupole interaction. This makes it neces- 
sary to determine seven additional molecular constants cl through {7 . The 
electric quadrupole constants adjusted in the least-squares fit of the spectrum 
of 14N1’0 are (1 , {z , (3 , and lh . The remaining three constants {d , (6 , and 5‘7 
were found to be less than 1 kHz without giving any improvement of the fit 
and are as taken zero. The results are listed in Table XIV. The calculated 
frequencies are tabulated in Table XII. Table XV lists the molecular con 
&ants taken from other sources and u.sed as known in the fit,. 



Table XIV Molecular constants of 14N160 and 15N160 obtained 

in this work (all values are in MHz, except a, 

which is dimensionless). 

constant name value for 14~16, value for 15,16, 

a3 

a7 

a4 

a5 

x1 

x2 

x3 

x; 

x6 

xi 

x9 

51 

52 

<3 

<5 

89.0235(2) 

1.4132(4) 

(-1,06(5))x10-~ 

(-o.lo(l))xlo-3 

46.3151(7) 

56.3001(5) 

113.639 (2) 

0.6015(7) 

(o.56(6))xlo-3 

-0.5837(3) 

(-5.2 (5))~10-~ 

-1.841 (1) 

-1.862 (1) 

12.115 (40) 

(-15.4 (7))xlo-3 

~~ -~- 

85.8210(2) 

1.3149(4) 

(-1.36(5))~10-~ 

(-o.lo(l))xlo-3 

-65.0240(7) 

-78.9582(4) 

-159.468 (3) 

-0.8444(7) 

(-3.77(6))~10-~ 

0.7888(l) 

(8.2 (5))~lO'~ 

a 

x4 

x5 + x7 

0.02836(2) 0.027334(8) 

-20.896 (25) 29.875 (25) 

(17.8 (8))x10-~ (-55.6 (8Hx10'~ 

3il 
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Table XV Molecular constants of 14N160 and 15N160 taken from 

other sources and used in the present fit. 

value for 
14~16, 

value for 
15N160 

Ref. 

4r 123.160 cm -1 

a 

123.160 cm -1 (15) 

BIl 50 838.56 MHZ 49 041.34 MHZ ( 2) 

DIl 
o.“l71 MHZ 0.139 MHZ ( 2) 

BC 59 568.76 MHZ 57 206 MHZ ( 7) 

a We used for 151f160 the value of 14N160 . 

V. DISCUSSION 

The differences between the experimental frequencies and the frequencies 

calculated as outlined above (Tables XII and XIII) are approximately an order 

of magnitude smaller than between the experimental and the predicted fre- 

quencies of Neumann (5). The third-order hyperfine-structure cont’ributions 

give rise to a number of terms with a different J dependence. These contributions 

are responsible for the better agreement between experiment and theory; they 
were not included in previous calculations of the spectrum, The additional 
coupling constants are x5 through x9 , and <s. 

However, the fit for the frequencies of the ‘II 1,2 state is not as good as we ex- 

pected. An obvious thought is that neglect of higher-order contributions from 
fine and hyperfine structure might be responsible for the remaining discrepancy. 

The fourth-order fine structure can be separated into two parts. One part 
containing terms with a similar J dependence as those of Table VIII and may be 
absorbed in (~1 through cyll wilthout changing anything in the mathemat,ics of the 
least-squares fit. The other part contains terms with a different J dependence. 
However, calculations of these contributions and rough estimates similar to 
those of Ref. (1) showed that they were smaller than the experimental accuracy. 
So fourth-order fine structure cannot explain the discrepancy. 

The fourth-order hyperfine contributions were calculated by Freed (1) for 
a “II state. They were calculated by us for a “II state and included in the least- 
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Table XVI Relations between hyperfine constants of Table XI 

and conventional constants (neglecting third 

order effects). 

conventional constants present constants Ref. 

a +3x, + x3) (10) 

b - 2x4 ( 10) 

2(-x,+x4) + $x3 (10) 

d 
2X2 (10) 

eQq, Sk, +c2) ( 16) 

eQq2 253 
( 16) 

squares fit of the spectrum. It was not necessary to introduce new coupling con- 
stants. Unfortunately no improvement of the fit was obtained. For this reason 
we did not discuss here the explicit expressions for the fourth-order contribution 
of t,he hyperfine structure. We did not find any other contribution which could 
explain the discrepancy between the experimental and theoretical frequencies. 

No attempt was made to perform the very tedious fifth-order calculations. 
Comparison with previous experiments (g-5) is not simple, because t,he third- 

order hyperfine effects were always neglected. Especially the molecular fine- 
structure constants a3 and (~7 include third-order as well as second-order effects. 
However, if the third-order effects in the hyperfine-structure const,ants are 
neglected, one can easily deduce relations between the hyperfine const.ants 
defined by Frosh and Foley (8)) and by Dousmanis et al. (IO), and the constant,s 
used in this work. This is done in Table XVI. 

Neglecting third-order effects in the hyperfine structure, we calculated from 
Tables XVI and XIV the hyperfine coupling constants of Table XVII. In this 
t,able are also listed the results of previous investigations. It should be noted 
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that the accuracy of the molecular constants, especially a and d, claimed by 

Neumann (5) is too high, because he neglects the third-order hyperfine effects. 
Our calculat’ed hyperfine-structure constants agree quite well with those of 
Neumann (5) and Brown and Radford (4). 

APPENI>IS 

The molecular Hamiltonian H of a diatomic molecule is invariant under w- 

flections u,, in a plane containing the molecular axis, so that 

-’ H err urr = H iAl! 

and the wavcfunctions, which arc used as basis for thr calculation of the matrix 
elcmrnk of H, must have the proper symmetry with respect to these rcflcc- 

tions. 

The zero-th-order molecular wavefunctions in a Hund case (a) can formall> 

bc written as 1 JAZZ). They can be split into a rotational and a rot,ationlws 
part: 

1 JRx2) = IJa) / A) 1 AD), iA”j 

whwc 1 JQ) is the rotational part. Under the reflections uIT the functions 

IJAX) brhavc as (6, 11-14) 

UIZ I JAX) = (- l)“( - l)JP”‘“P”+A I .J - A - s - a). ( a3 I 

Herein s is even or odd for 8+ or SW states, respectively, and zero ot~hrrwiw. 

So functions with a proper symmetry can be defined as 

2s+1 + 
I. ,&) = (l,‘&)[l JAZfi) f (-1)” 1 J - A - S - a)], (Aq) 

where r stands for 2, II, A, . . . . 

The symmetry of t’hesr functions under thr reflections urz is &( -1) JPR: 

urr 1 2s+11’*,lL, J) = f (-l)‘-” /2s+?‘* ,r2 , J). (A:S) 

This is called the Kronig symmeky of the fun&ions. These definit,ions of sym- 

metry are in agreement with Herzberg i;‘), but differ slightly from thaw of 
[creed (1) . 

The symmetry considerations halve the number of matrix elements which 

must br calculated. From Eqs. (Al) and (A3) it follows. 

(JdXI I H / J’dS’d) = (JLZQ 1 u;;l Hu,, / J’ A%‘) 

= j (J - ,I - E - Q I H ( J’ - A’ - S’ - d), 
(_46) 

Wlll3T 

(~+~,)+J+.l,+S+SI+I2+[~’ ~ (‘3+2’) + Chili’) f= t-11 ( A7 / 
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With 

J = J’, 8 = S’, ( _I)*+*’ = ( _I)--(*+*‘), 

&. (A7) becomes 

f = (-l)s+s’. (As) 
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