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The Hyperfine A-Doubling Spectrum of “N'*O and N’
W. L. MeerTs AND A. DYMANUS

Department of Physics, University of Nijmegen, Nijmegen, The Netherlands

The molecular beam electric resonance method was used for the investi-
gation of the hyperfine A-doubling transitions AJ = 0, AF = 0, &1 for a num-
ber of J values of both the 2, and the ®II3; states of the molecules N0
and 1°N!%Q. The observed spectrum is explained using the degenerate per-
turbation theory introduced by Freed (7). This theory is adapted for a I
molecule and includes contributions up to third order in fine and hyperfine
structure. The agreement between observed and calculated values is satis-
factory.

I. INTRODUCTION

The microwave spectrum of NO was measured previously by Gallagher and
Johnson (2), Favero et al. (3), and by Brown and Radford (4). The A-splitting
constants and the hyperfine structure constants were determined from these
measurements. Recently Neumann (5) measured the hyperfine A-doubling
spectrum of “N'°0 with the molecular beam electric resonance method and
obtained accurate frequenecies of the AJ = 0 transitions and values of the
molecular coupling constants. For theoretical interpretation of the spectrum
Neumann used the degenerate perturbation theory (DPT) discussed by Freed
(1) with fine-structure contributions up to fourth order and hyperfine structure
contributions up to second order. The agreement between experimental and
theoretical results looked very satisfactory.

The present investigation on NO was intended both as a first step and as a
test case in a program on hyperfine structure of open-shell molecules using the
molecular beam electric resonance method. In addition to reproducing the
measurements of Neumann (5) we were able to measure a large number of
transitions in higher J states of the I, ,; and *II; states of both *NO and "NO.
These transitions extend over a region from about 0.7 MHz to about 1.5 GHz.
Especially the high-frequency transitions might be of interest to radicastron-
omers. When fitting the present measurements in “NO it was discovered that
the frequencies predicted by Neumann () for the II; » state deviated from our
experimental values by even as much as 250 kHz. It was not possible to explain
these deviations within the scope of the theory used by Neumann. Consequently
we decided to extend the theory by including hyperfine-structure contributions

320

Copyright © 1972 by Academic Press, Inc.
All rights of reproductinn in any form reserved.



RADIO-FREQUENCY SPECTRUM OF NO 321

up to third order. This yields new contributions to the energy, which have a
J dependence which differs from that present in the theory used by previous
investigations (2-5). The new contributions result in & much better agreement
between theoretical and experimental frequencies for both molecules.
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where Hp is the nonrelativistic Hamiltonian for electronic energies in the Born-
Oppenheimer approximation, V contains the spin—orbit and gyroscopic terms
which give rise to the A splitting, and V' describes the hyperfine contributions.
IFor V we used

V=BJ-L'+8") + ALS. — 2B] S
+ B+ YwA)(L,S_+LS,)—B(J;L_+J.Ly). (2)

The Hamiltonian V of Eq. (2) 18 in accordance with that of Van Vieck (6),
buy. differs slightly from the one used by Freed (). For the hyperfine Hamil-
tomian V' we used the expression given by Freed (1). This rather complex ex-
pression will not be reproduced here.

With the Hamiltonian (1) the spectrum of a “II state is calculated using the
degenerate perturbation theory (DPT) described by Freed (7). The contribu-
tions of the fine and hyperfine interactions to the energy are taken into account
up to third order. In the final expressions for state energies we separate terms
with different dependence on the rotational quantum number J, as only these
terms can be determined from the experimental data. The results show that the
fine-structure effects up to third order describe, within experimental accuracy,
the J dependence of the contributions to the A splitting. The hyperfine contribu-
tions up to third order have to be considered in order to obtain an acceptable

ogrunmunf with exnermimental results, but the fourth-order contributions are

SCHICIY vivll CApCiiinCiilal ULy L L0 RIS OIGCE conirbutions

below the experimental aceuracy and are neglected (see also Section V). In the
calculations the interactions of excited °F, 2H, and A states with the ground
XII state are considered.

I1. 2. Wavefunctions, Symmetry and Energy Matrix

The ground electronic state of NO is a “II state. Application of DPT with the
Hamiltonian (1) makes it necessary to solve a 4 X 4 secular equation (7).
However, the Hamiltonian (1) is invariant under refiections of the coordinates
and spins of all particles in a plane containing the nuclei. Consequently, if wave-
functions are used with the proper symmetry (called Kronig symmetry) with
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respect to these reflections (see also Appendix A), the secular determinant
factors in two 2 X 2 determinants.

The coupling scheme of the angular momenta in the NO molecule is nearly a
Hund case (a) (7, 8). Wavefunctions, including the rotation of the nuclear
frame, are formally written as | 2I‘ilg, J ), whereI' = Z° I, A, ---, and Q is
the projection of the total angular momentum J on the molecular axis. These
wavefunctions are defined by

PIra J) = (1/v2) [ JASQ) £ (1) | J —A—S—a)]  (3)

with @ = A + Z. The functions on the right-hand side of Eq. (3) are given by
Freed (1). Their Kronig symmetry is & (—1)”"""* (see also Appendix A). The
phase factor ( —1)" has significance only if I' = =°, s = 4, in which case ( —1)"=
lfors= +,and (—1)° = — 1fors = —.

The matrix elements of the fine- and hyperfine-structure Hamiltonian for
a Il state on the basis defined in Eq. (3) are calculated using the results of
Freed (1). The nuclear spin I of the nitrogen atom is coupled with the rotational
angular momentum J to F in the conventional way: J + I = F. The results are
given in Tables I and I1.! Only matrix elements, which are important for further
calculations are tabulated. The matrix is Hermitian.

In V should also be included the term v N-S. This term is discussed sgx-
tensively by Freed (7). Its contributions to the energy are of the orde:* of
100 MHz. However, in first order (see Section II. 3) this term does not con-
tribute to the A splitting. The matrix elements of v NS can easily be cal-
culated using the formulas of Ref. (7). They have exactly the same J dependence
as V of Table I, and give only a correction to {; and 6, , which are an order of
magnitude smaller than those from V. It is clear that these terms can be ab-
sorbed in V for further calculations, if we are only interested in terms with a
different J dependence. This has been done without changing the definitions of
these constants used in Table 1.

In Tables I and IT (and in the following) the symbols == (¢), *II* (1), and
’A* (k) indicate a °%, "I, and *A excited electronic state, respectively; the index
in the brackets numbers the state. Table III defines the quantities used in
Tables I and II, where ¢, D, K, and @ are the molecular constants defined by
Freed (7). The indices correspond to the A values of the initial and final states,
respectively.

II. 3. Fine Structure

Because we measured A-doubling transitions from a Kronig + to a Kronig —
state within one J state, only contributions to the A splitting are of interest,
i.e., contributions different for states with an opposite symmetry. From Table I
it is seen that only the Z° states give a contribution to the A splitting.

1 A factor +/[I(2] 4+ 1)(I 4+ 1)] is missing in the 4th equation of Table V of Ref. (1).
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Table III Definition of the quantities used in Table I

and II.

x = J(J+1)

F(F+1) ~ J(J+1) - 1(I+1)
2J(J+1)

z =V (3-3)(3+3/2)

2c(c-1) - J(I+1) 1(1+1)

* ) 21(21I-1) J(J+1)(23-1)(2J+3)

c = I(I+1) + J(J+1) - F(F+1)

v = \/(J-3/2)(J+5/2)

AH spin-orbit coupling constant of the X2H state
BH rotational constant of the X2II state

BZ rotational constant of the 22 state

CRS Describes the nuclear spin-rotation interaction
o; = <2z(i)l|(B+%A)L_||x?n>

o5 = <22(i)[|BL_||X2H>

E(1) = <n@)lal|€n

B,(1) = <Pn(1)|[s||xm>

n, (k) = <n||e-||%(x)>

ny(k) = <] | (B+3A)_] P8 (x)> - Aé% /73

Gi = Gygp)f72

Dy = 2 Dy(4)

Q; = W6 Q0(1)

Y1) = 3(6y)- g% ) %’6 Dy4(1)
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Table III (continued)

Yg(l) = D1-1(l)
31 = My,
ys(l) = 2/6 Q1_1(l) (
'_Y/(l) = 3/2((}../-.\ +‘177K../-.\ +;V/6 D../-.\)
o] 191¢L) 4+ Tiy1) 3 11 1)
GA(k) = 612(1{)/\/2
Dplk) = 3 Dy
QA(k) = L4 /6 Q12(k\

The n-th (n = 1, 2, 3)-order perturbation Hamiltonian V™ is defined by
Freed (1, Eq. (3.2))

V(l) - V (4)
ve y‘ V|25 6)(2ihR3G) |V (5)
@z ’ "
V(3) = V(3) + V(3) (6)
@ _ 5 VIZH)EHG) | V] ZH0))CEHRG) |V -
Vl - %: (st)(HZB) ] (1>
® _ _ 5 VIZR@O)CZHG) [V ) Wa [V
’ Z (IZ)? ®)
Herein |y, ) is one of the X 1* states, and (II =) = Exumr — Ewesy, the

energy difference between the X'II and the i-th excited *3° state.
Now we make the following approximation:
THOIVI=RG)) = B + 1) = (—1)'B:(J + 19),

where By is an effective rotational constant of the Z states. With this approxi-

3
mation V¥ becomes

ve = 3 VI ZHE)CERD [V p 7y 1
1 _?J (Hzls)‘z &2 2\ I / Z/

In the Tables IV, V, and VI, are tabulated the first-, the second-, and the third-
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Table IV First order energy contributions due to fine

structure,

2y (1)2.+ 142
< n;ly | > = - 3A; + B (J+3)

Pt

3}

[v )12t JA + B (3(3+1)- Try)

3/2 3/2”

2t
312

[}

B, z

1),2. %
lV ] II%> 1

Table V Second order energy conditions due to fine

structure.

<2n§‘y(2)lzn§> Aéz)(J+%) (2J+1)A(2) + A(Z)

<2H§/2|Y(2)|2n§> = gz Agz) + Kéz)z (J+3)

order contributions to the energy duc to the fine structure, respectively, while
in Table VII are defined the quantities used in Tables IV-VI. The (+4) and
(—) signs in Table VII indicate that the sums extend only over Z* states with

= + and s = —, respectively. The fine-structure contributions from Tables
IV-VT are collected in Table VIII according to their J dependence.

II. 4. Hyperfine Contributions

The hyperfine structure gives contributions to the energy in second and
third order. The second-order hyperfine Hamiltonian is V', the third order con-
sists of three parts. These parts describe the interaction w1th the excited Z, II,
and A states. The interaction Hamiltonian can be written formally as

V<3) _ (3) ( ) + V;(j) (H + V(S) (A), (10)
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Table VII Definitions of the molecular constants used in

Table V and VI,

(n) _ L (n)+ (n)-
b= AT el
OO RSICE b=z 3
(n)t 2 ;9 ® k=1,2,3
= + n-1
i (nzl)n
(n)+ <?_ &5t
A2n) - i’i
i (nz.)
ame E %%
oE (nz))

The sums extend for the (+)sign only over Z+ states, for

the (~)sign only over the L~ states.

with
i) v >(221/i>(z)IV V2 )2tk () | VL
Vi (2) Zi (H S aizsy (11)
v (V| T, (1)1 Q) l Y L i‘hi )¢ H”’_(ZJX
,Z 1 (IITL,) -t (T11L,) (12)
VM (O)CT (0 |V VP ()G (0 [V
T amy o (I ) BN
and
1) _ ‘ l 3/; (/\/ ><A3/) (/\) | V quA?/Z (A>><2A3i/l (k\) | V
Vi (8) = Z \ © (1AL + (T1A) (13)
V| ad (k) (8% (k) | V' V| %88 (k))CAS (k) | VY
+ {may (1) fr
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Table VIII Collected contributions to the fine structure

up to third order (y(1)+y(2)+y(3) = Hp). -

<2H§I§F!2n§> =
4

- doyra,(341) %4, (343) Yo, (2741) 0y (3+1) 3b0 (343) 22
1yl 15 = B (3041)- DragePea (34)2220ag(541) 22
4t IH |2 n3/2 = a6z+a11z(J+%)2ta z(J+;)¢a8z(J+g)3
With a, = A- A(3)An 2A(2)+2A(3) B

0 = mpeaP i a3l aal) (5 n yeal s

S O O

o = 323)B2+2K§3)(B2-BH)

% == KéB)Bn

ag =B +A(2)+B (A(3)+$A(3)- %A:(33))
ap = B2E(m o )+E{35

ag = 1(3)(3 B )

oy = A2 P a4 Dy

%o = Aé3)(Bz'Bn)

o, = (A$3)+Aé3))(BZ—BH)
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Teable X Definition of the molecular constants from Table IX.

B

]

D. o, vy, (1)E_(1)
3(Gyq- 2v6K, - %/6D11)+22 il _J aowe
1 (nzi) I (n Hl)

N (1)E (1)
D.z. +o (G +D ) N 1,(1E (1)

+2_/_ (.1)s 1 -/

(m 2 %) 1 (mm)
(x)D, (k)
3 1 1 ? Mo\ &8,
=(G, .+ =/6K, .+ =/6D, ,)-6 _- s
20117 5 0N 3T F (s
Y R ()-25,(1))vg(1)
1 (n ”1)

D.7.-0.{G.+D.) Z D, (k)n, (k)
1 171 1'1 1 A 1
EJ6(D11‘K11)+;§:;_ - *

(n z?) k(1 4,)

f ny(k){G, (k)-D, (k) } Z B (1 {y (D)4 (1)}
+

k (n A ) (n nl

+ 2

, z;(G;+D;) . Y1(l)§n(l)
q S
(n zi) 1 (n nl)

-5 (Gi+Di)Ci ‘0 Yh(l)ﬁn(l)
i (n z?) I (nn)
En(l)Y6(l)

1 (n my)

n1(k){GA(k)+DA(k)}

k (n Ak)
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X {continued)
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Table X (continued)

| Zi ? n (), (k)
¢ =
6 (nz) ()

) k
, =Zi +Z ny(k)Q, (k)
T (n 52) = (1)

The second- and third-order hyperfine contributions due to the fine structure
are easily calculated using Egs. (11)-(13), and Tables I and II. The result is
given in Table IX, while in Table X are defined the relations between the
molecular constants of Tables IX and III.

Experimentally we can separate only terms with a different J dependence.
This reduces the equations of Table IX to those of Table XI. The equations
given in Tables VIII and XI are the final results. The molecular constants
defined in these equations should describe the hyperfine A-doubling spectrum
up to third order in energy. The theory outlined above is used to analyze the
experimental spectrum. The constants are adjusted by a least-squares method
to fit the experimental data.

II1. EXPERIMENTAL RESULTS

The experiments were performed using the molecular beam electric resonance
method. The experimental setup has been described in detail elsewhere (9).
For the measurements on "N'°0 we used an enriched (95 %) sample. The gas
was recovered after every run of about 4 hr. The loss was approximately 1.5 %
per run. The measured frequencies involved the electric dipole transitions from
a +Kronig symmetry level to a —Kronig symmetry level, within one J state.

The NO molecule in its *II state has a very strong Zeeman effect, and the
transitions of the ’II;, state are strongly split by the earth’s magnetic field.
These splittings decrease with increasing J value. The AF = 0 transitions are
seen as triplets. The frequencies of the central lines of these triplets are, within
experimental accuracy, those of the zero field transitions. The AF = +1 transi-
tions appear as broad doublets (*NO) or triplets ( ®NO) symmetrically located
about the zero field frequencies. We were able to minimize the magnetic field to
~ 5 mG, The full line widths were 10~20 kHz for J = 35 and 34 of “IL; , and
less than 10 kHz for the other transitions.
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Table XI Hyperfine structure contributions up to third order

after collecting terms with the same J dependence.

<2H§whf|2ni%-> y{(X1+22XS)i(J+%)(X2+z2x6)} *

+ ul (3 (2 #,3(341) )25 2% (343))

2_* 2_+ 2
Ty oltpel g 0> = yixgtexg) +

+ ulBlex) (00, 3(41)) + (gp,(3+3)2%)

<2H§|§hflen§/2> ZY{(Xh+22x8)ix9(J+%)} +

+ zu{i(c3+C5J(J+1))(J+%)+(C6-ChJ(J+1))}

with x; = 8,+8.+iC S RN
Xo = BBy Ty = dp*idy
X3 = B3*B=38g+iCpo Ty = 0-20g
Xy, = By, B =4y
X5 = B5*Bg*Cas % = %
Xg = 81 tg = btp 0,
X = 86+87+68+CRS Ly = ¢g
xg = By
Xg = Bqa

The observed transition frequencies at zero electric and magnetic fields and
their uncertainties are given in Table XII for N0, and in Table XIII for
167716,

N*0.
As can be seen from Table XII the experimental results of Neumann (§) on



Table XII Observed and predicted hyperfine A-doubling

transitions for 1hN160.

Observed frequencies (MHz)

previous Calculated
J Q F, F_a This work measurements (5} frequencies
0.5 0.5 0.5 0.5 205.9510(2)  205.951(1) 205.9582
1.5 1.5  U31,1905(2) 1431.191(1) 431,1587
1.5 0.5 411,2056(2) L11.206(1) 411,1886
0.5 1.5 225.,9357(2) 225.936(1) 225.9282
1.5 0.5 0.5 0.5 560.8538(2) 560,8529
1.5 1.5 651.5425(2)  651.543(1) 651.5275
2.5 2.5 801.1963(2) 801.2179
1.5 2.5 758.9106(2) 758.9379
2.5 1.5 693.8282(2) 693.8076
0.5 1.5 624 ,6494(2) 624 .6259
1.5 0.5 587.7467(2) 587.T545
2.5 0.5 1.5 1.5 929,259 (L) 929.2kk41
3.5 3.5 1160.7768(3) 1160.8073
3.5 2.5  1114.677(15) 1114.7102
2.5 3.5 1072.596(12) 1072.6308
2.5 1.5 991.7338(2) 991.7351
1.5 2.5 964,023 (2) 964 .0428
3.5 0.5 k4,5 L5 1514,768 (1) 1514.7580
L5 3,5 1434,588 (1) 1434 .,6099
3.5 4.5 1467.511 (1) 1467498k
3.5 2.5 1325,299 (1) 1325.,2872
2.5 3.5 1348,459 (L) 13k8.4151
1.5 1,5 1.5 1.5 0.612 (1) 0.612(1) 0.6118
2.5 2.5 1.029 (1) 1.029( 1) 1.0288
1.5 2.5 74.931 (3) T4.930(1) T4.9212
2.5 1.5  73.286 (3)  73.289(1)  73.2806
0.5 1.5 46,464 (3) 46.470(5) 46,4567

336



Table XIT (continued)

Observed frequencies (MHz)

N previous Calculated
J Q@ F, F_ This work measurement (5) frequencies
2.5 1.5 2.5 1.5 3.121 (1) 3.121(1) 3.1203
3.5 3.5 3,923 (1) 3.923(1) 3.9226
3.5 2.5 L7.211 (1) k7.212(1) L7.2122
2.5 3.5 ho.172 (6) 40.1693
2.5 1.5 34,390(30) 3L.3715
3.5 1.5 3.5 L4.,5 39.221 (2) 39.2310
2.5 3.5 31,550 (L) 31.5415
L5 1.5 5.5 L.5 40.512 (1) 40.5129
Lis 3.5 35.045 (2) 35.0452
5.5 1.5 4,5 L5 31,124 (1) 31.124(1) 31,1251
5.5 5.5 30.265 (1)  30.265(1) 30.26k49
6.5 6.5 32.k25 (1)  32.L25(1) 32.k24k2
5.5 6.5 48,786 (1) 48,7861
6.5 5.5 13.905 (1) 13.9029
6.5 1.5 5.5 5.5 49.405 (1)  L9.ho5(1) 49,4056
6.5 6.5 48.578 (1)  48.577(1) 18.5772
T.5 7.5 51,260 (1)  51.260(1) 51.2598
7.5 6.5 63.640 (1) 63.6409
6.5 7.5 36.196 (1) 36.1960
6.5 5.5 59.742 (1) 59.Th21
5.5 6.5 38.243 (1) 38.2L06
7.5 1.5 6.5 6.5 73.540 (1)  T73.540(1) 73.5397
7.5 7.5 72,786 (1)  72.786(1) 72.7853
8.5 8.5 76.025 (1) 76.025(1) 76 .0240
7.5 8.5 85.255 (1) 85,2563
8.5 T.5 63.552 (1) 63.5530
6.5 7.5 81.547 (1) 7 81.5L68

7.5 6.5 6%.778 (1) 64,7783
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Table XII (continued)

Observed frequencies (MHz)

a previous Calculated
J Q F+ F_ This work measurements frequencies
8,5 1,5 7.5 7.5 104,216 (2) 10k.2147
8.5 8.5 103,575 (2) 103.5746
9.5 9.5 107.500 (1) 107.3400
9.5 8.5 114,024 (1) 114.0220
8.5 9.5 96.951 (1) 96.9526
8.5 7.5 110,306 (1) 110.3057
7.5 8.5 97.483 (1) 97.4836

a

F, F-state with Kronig symmetry t.

“N'0 agree very well with ours. However, his predicted frequencies (9), espe-
cially for the I, state, show a great discrepancy with our experimental results.

1V. ANALYSIS OF THE SPECTRUM

From Table VIII it follows that the A splitting is determined by the constants
as, ai, as, a7, and as. We make the following approximations for the other
molecular constants from Table VIII:

a1=An;a2=Bn+a7;as=BH+a3;a9=a7;a10=a11=0.

This is a permitted approximation, because terms which do not contribute
directly to the A splitting must be at least of the order of 10 MHz to give higher-
order effects on the energy within the present experimental accuracy (about
1 kHz). From Table VIII it follows that a3 = a;(Bu=Bs)/Bn. As An and Bi
are known from other experiments the A splitting is described up to third order
by four constants az, a:, a;, and a7 .

IV. 1. *N*0.

The absence of the contributions from electric quadrupole interaction in
N0 (I = 14) simplifies the spectrum considerably. Nine hyperfine structure
constants, all x, have to be determined for this molecule.

We calculated the coefficient matrix, which describes the dependence of the
calculated frequencies on the various constants. The rank of this matrix was



Table XIII Observed and calculated hyperfine A-doubllng

transitions for 5 16
Observed Calculated
J 9) F, F_ frequencies (MHz) frequencies (MHz)
0.5 0.5 O 0 501.1979
0 1 482.,6212(2) 482.6189
1 0 309.2256(2) 309,2217
1 1 290.6565(2) 290 ,6L426
1.5 0.5 1 1 790.9748(3) 790.9651
2 1 Th2,8364(3) T42,83L6
1 2 670,7076(3) 670.7201
p) 2 622,5690(3) 622.5896
2,5 0.5 2 2 1121.1513(3) 1121.,1691
2 3 1064 ,69hLk
3 2 1015 .4 147(5) 1015.391k
3 3 958.9183(3) 958.9167
3.5 0.5 3 3 1454 ,9160(5) 1454.9013
4 3 1394 ,6320
3 L 1355.0719
N h 1294 ,8026
1.5 1,5 2 1 84,589 (2) 84,5877
1 2 82.9340
1 1 0.8732
2 2 0,780 (5) 0.7804
2.5 1.5 2 3 55.738 (3) 55.7429
3 2 49,1965
2 2 3.393 (3) 3.3923
3 3 3.154 (1) 3.1542
3,5 1.5 & 3 45,5804
3 b 29.3107
3 3 8.354}
4 4 7.9152
L,s 1,5 L 5 Lk 5249
Y h 16.5308
5 5 15.8352
5 L 12.1591
5,5 1.5 6 5 50.2509(5) 50.2511
5 5 28.6642(5) 28,6634
6 6 27.6570(5) 27.6578
5 6 6.0702(5) 6.0701
6.5 1.5 6 7 62.2184(5) 62,2183
6 6 45.4609(5) 45,460k
T 7 Lk ,0920(5) LY 0927
7 6 27.3347(5) 27.3349
7.5 1.5 8 7 80.4891(5) 80.4891
T T 67.5905(5) 67.5905
8 8 65.8107(5) 65.8110
7 8 52.9121(5) 52.9124
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Table XIII (continued)

8.5 1.5 8 9 105.3590(5) 105.3590
8 8 95.6788(5) 95.6795 ’
9 9 93.4413(5) 93.4403
9 8 83.7610(5) 83.7608

8

F, F-state with Kronig symmetry .

smaller than the number of constants. Consequently not all constants can be
determined independently from the experimental data. It turned out that there
is a relation between x., x5 , and x7 . From the coefficient matrix it follows, that
the effect of x; on the energy can be absorbed in an effective x5, and x7 '

X5/ = X5 T O0Xa, (14)

X\ = xi + axi. (15)
The constants x; and x; in Table XI are replaced by x5 and x; , respectively,
whereas the effect of xi in the matrix clement (I, | Hyy | *II3.) of Table XI
can be taken as zero in the fitting procedure. The value of « is calculated from
the coefficient matrix. The resulting o (Table XIV) is varying very slowly
with increasing J. The error in the value of « is set equal to the maximum vari-
ation in « with increasing J.

The molecular constants a5, as, a5, @7, X1, X2, X35 x5', X6 X7, xs, and xs
are varied in a least-squares fit of the experimental spectrum. The constant
xs was found to be very small, and was subsequently set at zero.

Using Egs. (14) and (15) we calculated xs and (x5 + x7) from xs and xi.
Table XIV lists the values of the molecular constants of the best least-squares
fit. The calculated frequencies are given in Table XIII.

Iv. 2. "N

The hyperfine-structure constants x; through x, are determined in the same
way as for °N"°0. The nuclear spin / = 1 of “N introduces a contribution to the
hyperfine energy due to the electric quadrupole interaction. This makes it neces-
sary to determine seven additional molecular constants ¢, through ¢;. The
electric quadrupole constants adjusted in the least-squares fit of the spectrum
of *N"0 are &1, &2, ¢3, and ¢ . The remaining three constants i, ¢, and ¢
were found to be less than 1 kHz without giving any improvement of the fit
and are as taken zero. The results are listed in Table XIV. The calculated
frequencies are tabulated in Table XII. Table XV lists the molecular con-
stants taken from other sources and used as known in the fit.



Table XIV Molecular constants of 1)*1\1160 15I\I16

and 0 obtained

in this work (all values are in MHz, except «a,

which is dimensionless).

constant name  value for ''n'% value for '°n'%
o 89.0235(2) 85.8210(2)
o 1.4132(k) 1.3149(%)
oy (~1.06(5))x107> (-1.36(5))x1073
g (-0.10(1))x1073 (<0.10(1))x10™3
X, 46.3151(T) -65.0240(7)
Xo 56.3001(5) ~78.9582(4)
X3 113.639 (2) -159.468 (3)
X§ 0.6015(T) -0.84L4(T7)
X (0.56(6))x10™3 (-3.77(6))x10™3
X -0.5837(3) 0.7888(1)
Xg (-5.2 (5))x107> (8.2 (5))x1073
Z -1.841 (1)
%5 -1.862 (1)
%3 12,115 (ko)
= (-15.% (1))x1073
a 0.02836(2) 0.027334(8)
Xy, -20.896 (25) 29.875 (25)

X5 * Xq (17.8 (8))x107 (~55.6 (8))x1073
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Table XV Molecular constants of 1I‘I‘§I160 and 15N160 taken from

¢

other sources and used in the present fit.

value for 1]4N160 value for 151‘1160 Ref.
-1 &
A, 123,160 cm 123.160 cm (15)
B 50 838.56 MHz 49 ok1,34 MHZ ( 2)
Dy 0.177 MHz 0.139 MHz ( 2)
B, 59 568,76 MHz 57 206 MHz (7
& We used for 15N16O the value of 1hN16O.

V. DISCUSSION

The differences between the experimental frequencies and the frequencies
calculated as outlined above (Tables XII and XTII) are approximately an order
of magnitude smaller than between the experimental and the predicted fre-
quencies of Neumann (§). The third-order hyperfine-structure contributions
give rise to a number of terms with a different J dependence. These contributions
are responsible for the better agreement between experiment and theory; they
were not included in previous calculations of the spectrum. The additional
coupling constants are x; through xs , and 5.

However, the fit for the frequencies of the sz state 1s not as good as we ex-
pected. An obvious thought is that neglect of higher-order contributions from
fine and hyperfine structure might be responsible for the remaining discrepancy.

The fourth-order fine structure can be separated into two parts. One part
containing terms with a similar J dependence as those of Table VIII and may be
absorbed in a; through ay; without changing anything in the mathematics of the
least-squares fit. The other part contains terms with a different J dependence.
However, calculations of these contributions and rough estimates similar to
those of Ref. (1) showed that they were smaller than the experimental accuracy.
So fourth-order fine structure cannot explain the discrepancy. ‘

The fourth-order hyperfine contributions were calculated by Freed (1) for
a ’IT state. They were calculated by us for a *II state and included in the least-
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Table XVI Relations between hyperfine constants of Table XI
and conventional constants (neglecting third

order effects).

conventional constants present constants Ref,
a 3y, + X4) (10)
3 1 3
b - 2xh (10)
c 2(—x +x,) + 2 (10)
XT3
a 2)(2 (10)
eQq, 3z, +z,) (16)
eQq, 2t (16)

squares fit of the spectrum. It was not necessary to introduce new coupling con-
stants. Unfortunately no improvement of the fit was obtained. For this reason
we did not discuss here the explicit expressions for the fourth-order contribution
of the hyperfine structure. We did not find any other contribution which could
explain the discrepancy between the experimental and theoretical frequencies.

No attempt was made to perform the very tedious fifth-order calculations.

Comparison with previous experiments (2-5) is not simple, because the third-
order hyperfine effects were always neglected. Especially the molecular fine-
structure constants a; and oy include third-order as well as second-order effects.
However, if the third-order effects in the hyperfine-structure constants are
neglected, one can easily deduce relations between the hyperfine constants
defined by Frosh and Foley (&), and by Dousmanis ef al. (10), and the constants
used in this work. This is done in Table XVI.

Neglecting third-order effects in the hyperfine structure, we calculated from
Tables XVI and XIV the hyperfine coupling constants of Table XVII. In this
table are also listed the results of previous investigations. It should be noted
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that the accuracy of the molecular constants, especially a and d, claimed by
Neumann (5) is too high, because he neglects the third-order hyperfine effects.
Our calculated hyperfine-structure constants agree quite well with those of
Neumann (5) and Brown and Radford (4).

APPENDIX

The molecular Hamiltonian H of a diatomic molecule is invariant under re-
flections o., in a plane containing the molecular axis, so that

oriHon,=H (Al)

and the wavefunctions, which are used as basis for the calculation of the matrix
elements of H, must have the proper symmetry with respect to these reflec-
tions.

The zero-th-order molecular wavefunctions in a Hund case (a) can formally
be written as | JAZQ). They can be split into a rotational and a rotationless
part:

| JAZQ) = |JQ) | A) | SZ), (A2)

where | JQ) is the rotational part. Under the reflections o, the functions
|J AZQ) behave as (6, 11-14)

or | JASQ) = (—1)(=1)" 9 | J A - - Q). (A3)

. . + — . .
Herein s is even or odd for £ or 7 states, respectively, and zero otherwise.
So functions with a proper symmetry can be defined as

[T ) = (/v JASS) £ (—1)° | J — A — = — @), (Ad)

where T stands for 2°, 11, A, - - - .
The symmetry of these functions under the reflections o, is +(—1)""":

Ore I 2S-+-1F:tHH ']> = 4+ (__I)J>S ‘2S+1I‘i " 1J> (AS )

This is called the Kronig symmetry of the functions. These definitions of sym-
metry are in agreement with Herzberg (7), but differ slightly from those of
I'reed (7).

The symmetry considerations halve the number of matrix elements which
must be calculated. From Eqgs. (A1) and (A3) it follows.

(JAZQ | H | J'A'S'Q) = (JAZQ| o7} Howo | J A'S'D)

. ’ ’ <’ ’ (‘46)
f(J—A—-S—q|H|J —A -3 —q),

where

sHSN I+ I+ I48/4Q+Q7 — (SHIZH + (A+AD -
Jl'z(_l)(?Q + R+8/+ (Z+ (A+ . (‘L\‘)
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With

J=J,8 =48, (=" = (—1)74*"
Eq.(A7) becomes

JUE X . 3 —

{81 sh to thank Profesor M. Mizushima for reading the manuscript and
Dr. F. de Leeuw for his help in obtaining the experimental results.
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